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ABSTRACT. Let {uy} bedefined by uj—m =+ =u_1 =0,up = land un+aiun—1+---+
amUn—m =0 (m > 2, n > 1). In this paper we show that the congruence =™ +azm 14
-+ ++am = 0 (mod p) has m distinct solutions if and only if up—m = -+ - = up—2 = 0 (mod p)

and up—1 =1 (mod p), where p is a prime such that p > m and p{ am.

1. Introduction.
In [2] the author extended Lucas series to general linear recurring sequences by defin-
ing {un(ay,...,an)} as follows:
Ul gy =---=u_1 =0, up =1,
Up + A1Up—1 + -+ QGplp—m =0 (n=1,2,3,...),
where m > 2 and aq, ... ,a,, are complex numbers.

Let Z be the set of integers. In this paper we establish the following result.

Theorem 1. Letm > 2, m,ay,... ,am € Z, up = un(ay, ... ,an), and let p be a prime
such that p > m and p{ a,,. Then the congruence ™ +a;x™ '+ +a,, = 0 (mod p)

has m distinct solutions if and only if
Upem =+ =Up—2 =0 (mod p) and up,—; =1 (mod p). (2)
The famous Chebotarev density theorem implies that (see for example [4]) if the

polynomial z™ + a;z™" ! + -+ + a,, (ai,...,am € Z) is irreducible in Z[x], then the
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set S of primes p such that 2™ + a;2™ ' + -+ + a,, = 0 (mod p) has m solutions has
a positive density d(.5), that is,

{p: p<= peS}

d(S)= 1 > 0.
() so H{p: p <z, pisa prime}|
Thus, by Theorem 1 we have
Corollary 1. Letm > 2, a1,... ,Gpm € Z and u, = up(a1,... ,am). If 2™ +ajx2™ '+

4 an is irreducible in Z[x], then there are infinitely many primes p satisfying (2).

2. Proof of Theorem 1.

Let f(x) = 2™ 4+ a12™ ' + - + ap. If f(x) =0 (mod p) has m distinct solutions
bi,... by, then we have f(x) = (x —b1) - (z — by,) (mod p) and b; # b; (mod p) for
i # j (see [1, Theorem 108]). Suppose (x —b1) - (x —by,) = 2™ + Ajz™ L+ + A,
Then Y " (a; — A;)2™* = 0 (mod p) for any integer . Since p > m, by [1, Theorem
107] or Lagrange’s theorem we must have a; = A; (mod p) for i = 1,2,... ,m. By the
definition of {u,}, it is evident that w, = u,(41,...,4,;,) (mod p) for alln > 1 —m
Since p { a,, we see that p { by ---b,,. Hence, applying [2, Theorem 2.3] and Fermat’s

little theorem we obtain

bn+p 1+m—1 m n+m 1

Un+p—1 = un—l—p—l(Ab s 7Am) = = Z m

= ORT O EE= s (R
=1 71=1
J#i J#i
=up(Ay,... ,Apn) =u, (mod p) (n>1-—m).
Note that u1_,, = -+ =wu_7 =0 and ug = 1. So (2) holds.
Conversely, suppose (2) is true. Let
p—1—m
ap =1, g(x Z w;zP~17™7 and  f(x chx

Then we see that

Cr = E a;uj = E aiup-1-k—i (0 <k <p-—1),
0<i<m maz{0,m—k}<i<min{m,p—1—k}
0<j<p—1-m
itj=p—1—k



where max{a,b} and min{a, b} denote the maximum and minimum elements in the set

{a,b} respectively. Clearly we have ¢,_1 = apup = 1 and

€0 = GmUp—1—m = (up—l + a1Up—2 + -+ amup—l—m) — Up—1

= —up—1 = —1 (mod p).
For k € {1,2,... ,p — 2} we claim that

C — Z QUp—1—k—i- (3)

max{0,m—k}<i<m
If p—1—Fk > m, then clearly (3) holds. If 1 <p—1—k <m, forp—k <i < m we
have 1 —m <p—1—k—4i< —1andsouy 1, =0. Thus, 33", ajup1pi =0
and hence (3) is also true.

If m <k <p-—2, from (1) and (3) we see that ¢, = >..v;ajup_1-k—; = 0. If

1<k<m-—1,by (1), (3) and the fact that up_,,, = -+ = up_2 =0 (mod p) we get
Cr — Z QiUp—1—k—i = Z QiUp—1—k—i — Z QiUp—1—k—i
m—k<i<m 0<i<m 0<i<m—k—1

= — Z a;iup—1—k—i = 0 (mod p).

0<i<m—k—1

Therefore ¢, =0 (mod p) for k=1,2,... ,p—2.

Now, putting the above together we obtain

f(z)g(x) = (iaixm_i) (p_im uja:p_l_m_j) = pil cpr® = 2P~ — 1 (mod p). (4)
i=0 j=0 k=0

Since zP~'—1 = (x—1)(x—2) -+ (z—p+1) (mod p) by Lagrange’s theorem (see [1, The-
orem 112]), we see that f(x) is congruent to the product of distinct linear polynomials

(mod p). This completes the proof of Theorem 1.

3. Application to cubic congruences.
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Theorem 2. Let ay,as,a3 € 7, u, = up(ai,as,a3), a = (a? — 3az)3, b = —2a3 +
9ajas — 27asz, and let p > 3 be a prime such that p t abaz(b?> — 4a). Then the following
statements are equivalent:

i) 3 + a12? + asx + a3 = 0 (mod p) has three solutions,

i) up—14n = upn (mod p) for alln > -2,

iii) up—3 = up—2 =0 (mod p) and up—1 =1 (mod p),

V) Up—(2y)/3 =0 (mod p),

vi) $p+1 = af — 2a (mod p),

D
.. 1-(3

(
(
(
(iv) up—2 =0 (mod p),
(
(
(Vii) Vip— ()3 = 2(a? — 3az) = (mod p),
(

viii) z’f(%) =1, then p | Up—(2y)/65 if(%) = —1, then p | Vip—(2))/6/

where (7+) is the Legendre symbol, and {Uy,}, {Vy}, {sn} are given by
Uy=0, Uy =1, Uyy1 =bU, —aU,_1 (n>1),
Vo=2, Vi=b, Vpy1 =0V, —aV,_1 (n>1),
S0 =3, 81 = —a1, 83 = a3 — 24y, Sp43+ A15p12 + A28u41 + azs, =0 (n > 0).
Proof. From the definition of u,, we see that (ii) is equivalent to (iii). As ptb® — 4a

b2 —4a

5= is the discriminant of 23 +a12? +asx +as, the congruence 3+ a1 22 +asx +

and —
as = 0 (mod p) has no multiple solutions. By Theorem 1, (i) and (iii) are equivalent.
According to [3, Theorem 4.3], (i) is equivalent to (iv). By [3, Theorem 3.2(i)], (iv) and
(v) are equivalent. From [3, Theorem 4.1] we know that (i) is equivalent to (vi). By [3,

Lemma 3.1], (vi) is equivalent to (vii). It is well known that (see [5])

Usp = UpVy, Vo =V2—2a" and V72— (b —4a)U? = 4a".
Thus we have
2 p—(%) .9
Vio-80)/3 = V-6 =207 7 = V(26— 2(
4

1-(3)

(
2 (mod p).

ol

a? — 3as

p >(a% — 3as)



Therefore (vii) is equivalent to

ai — 3a )
V- (816 = 2<1 * (172))(@% —3a2) > (mod p).

As V2 — (b® — 4a)U? = 4a™, the above congruence is equivalent to

1-(%)

@)ya% —3a3)” 2 (mod p).

2 2 _
(b~ 4a)U%,_zyy6 = 2(1 - ( 5
Thus, (vii) and (viii) are equivalent and the theorem is proved.
Remark 1. Let a1, as, a3 € Z be such that 2 + a1z + asz + a3 is irreducible in Z[z].
From Theorem 2 and Chebotarev density theorem we know that there are infinitely
many primes p satisfying (i)-(viii) in Theorem 2.

Let p be a prime such that p > 3 and p { a? — 3as. From [3, Theorems 4.1 and 4.2]

and [3, Lemma 3.1] we know that

23 4+ a12? 4 azr + a3 = 0 (mod p) has no solutions

1

—(k
< Spy1 =az (mod p) <= V,_(2))3 = —(a? = 3a2) "> (mod p)

and

23 4 a12? + agx 4+ a3 = 0 (mod p) has one and only one solution

(B —
1-(5) 1

(
2

ol
=

<= Spp1 # ag,af — 2a3 (mod p)
(
2

= Vip—(z))3 # —(af — 3az) , 2(a} — 3az) (mod p).

By Chebotarev density theorem, there are also infinitely many primes p satisfying one

of the above conditions in terms of {s,} or {V,,}.
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