Journal of Number Theory 128(2008), 1295-1335.

ON THE QUADRATIC CHARACTER
 OF QUADRATIC UNITS

ZHI-Hong Sun
Department of Mathematics, Huaiyin Teachers College, Huaian, Jiangsu 223001, PR China
E-mail: szh6174@yahoo.com
Homepage: http://www.hytc.edu.cn/xsjl/szh

Abstract. Let $p \equiv 1(\bmod 4)$ be a prime. Let $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$. In the paper we mainly determine $\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ by assuming $p=c^{2}+d^{2}$ or $p=A x^{2}+2 B x y+C y^{2}$ with $A C-B^{2}=a^{2}+b^{2}$. As an application we obtain simple criteria for ε_{D} to be a quadratic residue $(\bmod p)$, where $D>1$ is a squarefree integer such that D is a quadratic residue of p, ε_{D} is the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{D})$ with negative norm. We also establish the congruences for $U_{(p \pm 1) / 2}(\bmod p)$ and obtain a general criterion for $p \mid U_{(p-1) / 4}$, where $\left\{U_{n}\right\}$ is the Lucas sequence defined by $U_{0}=0, U_{1}=1$ and $U_{n+1}=b U_{n}+k^{2} U_{n-1}(n \geq 1)$.

MSC: Primary 11A15, Secondary 11B39, 11A07, 11E25, 11E16
Keywords: Quadratic residue; Fundamental unit; Congruence; Lucas sequence; Jacobi symbol

1. Introduction.

Let \mathbb{Z} be the set of integers, $i=\sqrt{-1}$ and $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$. For $\pi=a+b i \in \mathbb{Z}[i]$ the norm of π is given by $N \pi=\pi \bar{\pi}=a^{2}+b^{2}$, where $\bar{\pi}$ means the complex conjugate of π. If $2 \mid b$ and $a+b \equiv 1(\bmod 4)$, we say that π is primary. If π or $-\pi$ is primary in $\mathbb{Z}[i]$, it is known that (see [IR, p. 121]) $\pi= \pm \pi_{1} \cdots \pi_{r}$, where π_{1}, \ldots, π_{r} are primary irreducibles. For $\alpha \in \mathbb{Z}[i]$ the quartic Jacobi symbol $\left(\frac{\alpha}{\pi}\right)_{4}$ is defined by

$$
\left(\frac{\alpha}{\pi}\right)_{4}=\left(\frac{\alpha}{\pi_{1}}\right)_{4} \cdots\left(\frac{\alpha}{\pi_{r}}\right)_{4},
$$

where $\left(\frac{\alpha}{\pi_{s}}\right)_{4}$ is the quartic residue character of α modulo π_{s} given by

$$
\left(\frac{\alpha}{\pi_{s}}\right)_{4}= \begin{cases}0 & \text { if } \pi_{s} \mid \alpha \\ i^{r} & \text { if } \alpha^{\left(N \pi_{s}-1\right) / 4} \equiv i^{r}\left(\bmod \pi_{s}\right)\end{cases}
$$

[^0]If $a+b i$ is primary in $\mathbb{Z}[i]$, it is known that

$$
\left(\frac{i}{a+b i}\right)_{4}=i^{\frac{a^{2}+b^{2}-1}{4}}=i^{\frac{1-a}{2}} \quad \text { and } \quad\left(\frac{1+i}{a+b i}\right)_{4}=i^{\frac{a-b-b^{2}-1}{4}} .
$$

If $a+b i$ and $c+d i$ are relatively prime primary elements of $\mathbb{Z}[i]$, then we have the following general law of biquadratic reciprocity:

$$
\left(\frac{a+b i}{c+d i}\right)_{4}=(-1)^{\frac{a-1}{2} \cdot \frac{c-1}{2}}\left(\frac{c+d i}{a+b i}\right)_{4} .
$$

For more properties of the quartic Jacobi symbol one may consult [IR, pp. 122-123, 311] and [Su6, (2.1)-(2.8)].

For any odd number $m>1$ and $a \in \mathbb{Z}$ let $\left(\frac{a}{m}\right)$ be the (quadratic) Jacobi symbol. For our convenience we also define $\left(\frac{a}{-m}\right)=\left(\frac{a}{m}\right)$ and $\left(\frac{a}{1}\right)=\left(\frac{a}{-1}\right)=$ 1. Then for any two odd numbers m and n with $m, n \neq \pm 1$ we have the following general quadratic reciprocity law: $\left(\frac{m}{n}\right)=(-1)^{\frac{m-1}{2} \cdot \frac{n-1}{2}}\left(\frac{n}{m}\right)$. If $m>1$ is odd, $a, b, x \in \mathbb{Z}, a x \equiv b(\bmod m)$ and a is coprime to m, we define $\left(\frac{b / a}{m}\right)=\left(\frac{x}{m}\right)$. Hence $\left(\frac{b / a}{m}\right)=\left(\frac{a}{m}\right)\left(\frac{b}{m}\right)$.

Let $D>1$ be a squarefree integer, and $\varepsilon_{D}=(m+n \sqrt{D}) / 2$ be the fundamental unit of the quadratic field $\mathbb{Q}(\sqrt{D})(\mathbb{Q}$ is the set of rational numbers). Suppose that $p \equiv 1(\bmod 4)$ is a prime such that $\left(\frac{D}{p}\right)=1$. As $\frac{m+n \sqrt{D}}{2} \cdot \frac{m-n \sqrt{D}}{2}=\frac{m^{2}-D n^{2}}{4}= \pm 1$, we may introduce the Legendre symbol $\left(\frac{\varepsilon_{D}}{p}\right)$. When the norm $N\left(\varepsilon_{D}\right)=\left(m^{2}-D n^{2}\right) / 4=-1$, many mathematicians tried to characterize those primes p for which ε_{D} is a quadratic residue $(\bmod p)$ (that is $\left.\left(\frac{\varepsilon_{D}}{p}\right)=1\right)$. In 1908, Vandiver [V] found that $\varepsilon_{5}=(1+\sqrt{5}) / 2$ is a quadratic residue of a prime $p \equiv 1,9(\bmod 20)$ if and only if $p=x^{2}+20 y^{2}$ for some $x, y \in \mathbb{Z}$. In 1942 Aigner and Reichardt [AR] proved that $\varepsilon_{2}=1+\sqrt{2}$ is a quadratic residue of a prime $p \equiv 1(\bmod 8)$ if and only if $p=x^{2}+32 y^{2}(x, y \in \mathbb{Z})$. In 1969, Barrucand and Cohn [BC] rediscovered this result. Later, Brandler [B] showed that for $q=13,37$ the unit ε_{q} is a quadratic residue of a prime $p\left(p \equiv 1(\bmod 4),\left(\frac{q}{p}\right)=1\right)$ if and only if $p=x^{2}+4 q y^{2}(x, y \in \mathbb{Z})$. For more special results along this line one may consult [BLW, LW1, LW2, Wi4], [Su6, Remark 6.1] and [Lem2, pp.168-180].

Let p and q be distinct primes such that $p \equiv q \equiv 1(\bmod 4)$ and $\left(\frac{q}{p}\right)=$ $\left(\frac{p}{q}\right)=1$. Define

$$
\left[\frac{q}{p}\right]_{4}= \begin{cases}1 & \text { if } q \text { is a quartic residue }(\bmod p) \\ -1 & \text { if } q \text { is a quartic nonresidue }(\bmod p)\end{cases}
$$

According to [Lem2], in 1839 Schönemann [Sc] showed that

$$
\left(\frac{\varepsilon_{p}}{q}\right)=\underset{2}{\left[\frac{q}{p}\right]_{4}\left[\frac{p}{q}\right]_{4}}=\left(\frac{\varepsilon_{q}}{p}\right) .
$$

This was rediscovered by Scholz [S] in 1934, and it is now called Scholz's law. In [Su1] the author proved $\left(\frac{\varepsilon_{p}}{q}\right)=\left(\frac{\varepsilon_{q}}{p}\right)$ using only the quadratic reciprocity law. If $p=a^{2}+b^{2}$ and $q=c^{2}+d^{2}$ with $a, b, c, d \in \mathbb{Z}$ and $2 \nmid a c$, in 1969 Burde $[\mathrm{Bu}]$ established the following Burde's rational quartic reciprocity law:

$$
\left[\frac{q}{p}\right]_{4}\left[\frac{p}{q}\right]_{4}=(-1)^{\frac{q-1}{4}}\left(\frac{a d-b c}{q}\right)
$$

In 1985, Williams, Hardy and Friesen [WHF] found a general rational quartic reciprocity law including Scholz's law and Burde's law. See also [Lem1,Lem2] and [E1].

Let $D>1$ be a squarefree integer. There are a great many papers discussing $\left(\frac{\varepsilon_{D}}{p}\right)$. The problem of determining the value of $\left(\frac{\varepsilon_{D}}{p}\right)$ is concerned with quartic residues, rational quartic reciprocity laws, class numbers and binary quadratic forms, and many mathematicians discussed the problem by using class field theory. For more references, see for example, [Bro1, Bro2, D, FK, KWY, K, Le1-Le5, LW3, W, Wi1-Wi3, Wi5].

In [Su6], the author proved the following general result (see [Su6, Theorem 6.2 and Remark 6.1]).

Theorem 1.1. Suppose that $p \equiv 1(\bmod 4)$ is a prime, $D, m, n \in \mathbb{Z}, m^{2}-$ $D n^{2}=-4$ and $\left(\frac{D}{p}\right)=1$. Then $(m+n \sqrt{D}) / 2$ is a quadratic residue $(\bmod p)$ if and only if p is represented by a primitive, integral quadratic form $a x^{2}+$ $2 b x y+c y^{2}$ of discriminant $-4 k^{2} D$ with the condition that $2 \nmid a$ and $\left(\frac{b n-k m i}{a}\right)_{4}=$ 1, where

$$
k= \begin{cases}1 & \text { if } D \equiv 4(\bmod 8) \\ 2 & \text { if } 2 \nmid D \text { or } 8 \mid D \\ 4 & \text { if } D \equiv 2(\bmod 4)\end{cases}
$$

Let $p \equiv 1(\bmod 4)$ be a prime and $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$. If $s^{2} \equiv$ $a^{2}+b^{2}(\bmod p)$ with $s \in \mathbb{Z}$, then clearly $\left(\frac{b+s}{p}\right)\left(\frac{b-s}{p}\right)=\left(\frac{b^{2}-s^{2}}{p}\right)=\left(\frac{-a^{2}}{p}\right)=1$. Thus we may define

$$
\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)=\left(\frac{(b+s) / 2}{p}\right)=\left(\frac{2(b+s)}{p}\right)=\left(\frac{2(b-s)}{p}\right) .
$$

In Section 2 we give general congruences for $\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ and deduce general criteria for $\left(\frac{\varepsilon_{D}}{p}\right)=1$. For example, if $D>1$ is odd, $\varepsilon_{D}=$ $(m+n \sqrt{D}) / 2$ and $N\left(\varepsilon_{D}\right)=-1$, and if $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}, 2 \nmid c, p \nmid n$ and $\left(\frac{D}{p}\right)=1$, then

$$
\left(\frac{\varepsilon_{D}}{p}\right)=\left(\frac{\left(m+\sqrt{m^{2}+2^{2}}\right) / 2}{p}\right)= \begin{cases}\left(\frac{m c+2 d}{D}\right) & \text { if } 2 \nmid m, \\ \left(\frac{c-\frac{m}{2} d}{D}\right) & \text { if } 2 \mid m .\end{cases}
$$

To our surprise, the result is very simple and it can be easily deduced from the law of quadratic reciprocity. If $4 \nmid a^{2}+b^{2}$ and $\left(\frac{a^{2}+b^{2}}{p}\right)=1$, in Section 4 we determine $\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)$ by expressing p in terms of binary quadratic forms of discriminant $-4\left(a^{2}+b^{2}\right)$. For example, if $p=x^{2}+\left(a^{2}+b^{2}\right) y^{2}$ for some integers x and y, we have

$$
\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)= \begin{cases}(-1)^{\frac{a}{2} y} & \text { if } 2 \mid a \text { and } 2 \nmid b, \\ (-1)^{\frac{p-1}{4}+\frac{b}{2} y} & \text { if } 2 \nmid a \text { and } 2 \mid b, \\ (-1)^{\frac{y}{2}} & \text { if } 2 \nmid a b .\end{cases}
$$

For $a, b \in \mathbb{Z}$ the Lucas sequences $\left\{U_{n}(b, a)\right\}$ and $\left\{V_{n}(b, a)\right\}$ are defined by (1.1) $U_{0}(b, a)=0, U_{1}(b, a)=1, U_{n+1}(b, a)=b U_{n}(b, a)-a U_{n-1}(b, a)(n \geq 1)$ and
(1.2) $V_{0}(b, a)=2, V_{1}(b, a)=b, V_{n+1}(b, a)=b V_{n}(b, a)-a V_{n-1}(b, a)(n \geq 1)$.

Let $\Delta=b^{2}-4 a$. It is well known that

$$
U_{n}(b, a)= \begin{cases}\frac{1}{\sqrt{\Delta}}\left\{\left(\frac{b+\sqrt{\Delta}}{2}\right)^{n}-\left(\frac{b-\sqrt{\Delta}}{2}\right)^{n}\right\} & \text { if } \Delta \neq 0 \tag{1.3}\\ n\left(\frac{b}{2}\right)^{n-1} & \text { if } \Delta=0\end{cases}
$$

and

$$
\begin{equation*}
V_{n}(b, a)=\left(\frac{b+\sqrt{\Delta}}{2}\right)^{n}+\left(\frac{b-\sqrt{\Delta}}{2}\right)^{n} \tag{1.4}
\end{equation*}
$$

Suppose $p \equiv 1(\bmod 4)$ is a prime, $b, k \in \mathbb{Z}$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Using the results in Sections 2 and 4, in Sections 3 and 5 we determine $U_{\frac{p-1}{2}}\left(b,-k^{2}\right)$ and $V_{\frac{p-1}{2}}\left(b,-k^{2}\right)$ modulo p. As an application, we give general criteria for $p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right)\right.$.

In addition to the above notation, throughout this paper we let \mathbb{N} denote the set of positive integers. For $a, b \in \mathbb{Z}$ (not both zero) let (a, b) be the greatest common divisor of a and b. For a given prime p and a nonzero integer n we use $\operatorname{ord}_{p} n$ to denote the nonnegative integer α such that $p^{\alpha} \mid n$ but $p^{\alpha+1} \nmid n\left(\right.$ i.e. $p^{\alpha} \| n$).
2. Congruences for $\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ when $p=c^{2}+d^{2}$.

For two integers a and b, it is easily seen that (see [Su1])

$$
\begin{equation*}
(b+a i) \frac{b+\sqrt{a^{2}+b^{2}}}{2}=\left(\frac{b+a i+\sqrt{a^{2}+b^{2}}}{2}\right)^{2} . \tag{2.1}
\end{equation*}
$$

This is the starting point for our goal.

Theorem 2.1. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \nmid c$. Suppose $a, b \in \mathbb{Z}$ with $(a, b)=1$ and $p \nmid a\left(a^{2}+b^{2}\right)$.
(i) If $\left(\frac{a^{2}+b^{2}}{p}\right)=1$, then

$$
\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)= \begin{cases}\left(\frac{b c+a d}{a^{2}+b^{2}}\right) & \text { if } 2 \mid a \\ (-1)^{\frac{d}{2}}\left(\frac{a c-b d}{a^{2}+b^{2}}\right) & \text { if } 2 \mid b \\ (-1)^{\frac{(b c+a d)^{2}-1}{8}}\left(\frac{b c+a d}{\left(a^{2}+b^{2}\right) / 2}\right) & \text { if } 2 \nmid a b\end{cases}
$$

(ii) If $\left(\frac{a^{2}+b^{2}}{p}\right)=-1$, then

$$
\begin{aligned}
& \left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\left(\frac{b c+a d}{a^{2}+b^{2}}\right) \frac{c}{d} \cdot \frac{b-\sqrt{a^{2}+b^{2}}}{a}(\bmod p) & \text { if } 2 \mid a, \\
(-1)^{\frac{d}{2}}\left(\frac{a c-b d}{a^{2}+b^{2}}\right) \frac{c}{d} \cdot \frac{b-\sqrt{a^{2}+b^{2}}}{a}(\bmod p) & \text { if } 2 \mid b, \\
(-1)^{\frac{(b c+a d)^{2}-1}{8}}\left(\frac{b c+a d}{\left(a^{2}+b^{2}\right) / 2}\right) \frac{c}{d} \cdot \frac{b-\sqrt{a^{2}+b^{2}}}{a}(\bmod p) & \text { if } 2 \nmid a b .\end{cases}
\end{aligned}
$$

Proof. We first evaluate the Legendre symbol $\left(\frac{b+a d / c}{p}\right)$. As $(b+a d / c)(b-$ $a d / c) \equiv b^{2}+a^{2} \not \equiv 0(\bmod p)$ we have $\left(\frac{b+a d / c}{p}\right) \neq 0$. It is known that $\left(\frac{c}{p}\right)=\left(\frac{p}{c}\right)=\left(\frac{c^{2}+d^{2}}{c}\right)=\left(\frac{d^{2}}{c}\right)=1$ and $\left(\frac{d}{p}\right)=(-1)^{\frac{p-1}{4}}=(-1)^{\frac{d}{2}}$. Thus,

$$
\left(\frac{b+a d / c}{p}\right)=\left(\frac{b c+a d}{p}\right)=\left(\frac{d}{p}\right)\left(\frac{a-b d / c}{p}\right)=(-1)^{\frac{d}{2}}\left(\frac{a c-b d}{p}\right)
$$

Now we assert that $\left(a^{2}+b^{2}, b c+a d\right)=\left(a^{2}+b^{2}, a c-b d\right)=1$. If q is a prime such that $q \mid\left(a^{2}+b^{2}, b c+a d\right)$, we have $-a^{2} c^{2} \equiv b^{2} c^{2} \equiv a^{2} d^{2}(\bmod q)$ and so $q \mid a^{2} p$. As $p \nmid a^{2}+b^{2}$ and $q \mid a^{2}+b^{2}$ we see that $q \neq p$. Thus $q \mid a$ and so $q \mid b$. This contradicts the condition $(a, b)=1$. Hence $\left(a^{2}+b^{2}, b c+a d\right)=1$. Similarly we have $\left(a^{2}+b^{2}, a c-b d\right)=1$. So the assertion is true.

If $2 \mid a$, then $2 \nmid b$. By the above we have $\left(a^{2}+b^{2}, b c+a d\right)=1$ and so

$$
\begin{aligned}
\left(\frac{b+a d / c}{p}\right) & =\left(\frac{b c+a d}{p}\right)=\left(\frac{p}{b c+a d}\right)=\left(\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{b c+a d}\right)\left(\frac{a^{2}+b^{2}}{b c+a d}\right) \\
& =\left(\frac{(b c+a d)^{2}+(a c-b d)^{2}}{b c+a d}\right)\left(\frac{b c+a d}{a^{2}+b^{2}}\right) \\
& =\left(\frac{(a c-b d)^{2}}{b c+a d}\right)\left(\frac{b c+a d}{a^{2}+b^{2}}\right)=\left(\frac{b c+a d}{a^{2}+b^{2}}\right) .
\end{aligned}
$$

If $2 \mid b$, then $2 \nmid a$. From the above we have $\left(a^{2}+b^{2}, a c-b d\right)=1$ and so

$$
\begin{aligned}
\left(\frac{b+a d / c}{p}\right) & =(-1)^{\frac{d}{2}}\left(\frac{a c-b d}{p}\right)=(-1)^{\frac{d}{2}}\left(\frac{p}{a c-b d}\right) \\
& =(-1)^{\frac{d}{2}}\left(\frac{\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right)}{a c-b d}\right)\left(\frac{a^{2}+b^{2}}{a c-b d}\right) \\
& =(-1)^{\frac{d}{2}}\left(\frac{(a c-b d)^{2}+(b c+a d)^{2}}{a c-b d}\right)\left(\frac{a c-b d}{a^{2}+b^{2}}\right) \\
& =(-1)^{\frac{d}{2}}\left(\frac{a c-b d}{a^{2}+b^{2}}\right) .
\end{aligned}
$$

If $2 \nmid a b$, then $\left(a^{2}+b^{2}\right) / 2 \equiv 1(\bmod 4)$. By the previous assertion we have $\left(a^{2}+b^{2}, b c+a d\right)=1$ and so $\left(\left(a^{2}+b^{2}\right) / 2, b c+a d\right)=1$. Hence

$$
\begin{aligned}
\left(\frac{b+a d / c}{p}\right) & =\left(\frac{b c+a d}{p}\right)=\left(\frac{p}{b c+a d}\right) \\
& =\left(\frac{2}{b c+a d}\right)\left(\frac{\left(c^{2}+d^{2}\right)\left(a^{2}+b^{2}\right)}{b c+a d}\right)\left(\frac{\left(a^{2}+b^{2}\right) / 2}{b c+a d}\right) \\
& =\left(\frac{2}{b c+a d}\right)\left(\frac{(b c+a d)^{2}+(a c-b d)^{2}}{b c+a d}\right)\left(\frac{b c+a d}{\left(a^{2}+b^{2}\right) / 2}\right) \\
& =\left(\frac{2}{b c+a d}\right)\left(\frac{b c+a d}{\left(a^{2}+b^{2}\right) / 2}\right)=(-1)^{\frac{(b c+a d)^{2}-1}{8}}\left(\frac{b c+a d}{\left(a^{2}+b^{2}\right) / 2}\right)
\end{aligned}
$$

Note that $(d / c)^{2} \equiv-1(\bmod p)$. From (2.1) we have

$$
\begin{equation*}
(b+a d / c)^{\frac{p-1}{2}}\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}} \equiv\left(b+a d / c+\sqrt{a^{2}+b^{2}}\right)^{p-1}(\bmod p) \tag{2.2}
\end{equation*}
$$

As $p \nmid a\left(a^{2}+b^{2}\right)$ we see that $b+a d / c \not \equiv 0(\bmod p), b+\sqrt{a^{2}+b^{2}} \not \equiv 0(\bmod p)$ and so $b+a d / c+\sqrt{a^{2}+b^{2}} \not \equiv 0(\bmod p)$.

Now we assume $\left(\frac{a^{2}+b^{2}}{p}\right)=1$. By the above we have

$$
\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)\left(\frac{b+a d / c}{p}\right)=\left(\frac{b+a d / c+\sqrt{a^{2}+b^{2}}}{p}\right)^{2}=1 .
$$

Thus

$$
\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)=\left(\frac{b+a d / c}{p}\right) .
$$

This together with the previous evaluation of $\left(\frac{b+a d / c}{p}\right)$ proves (i).
Let us consider (ii). Suppose $\left(\frac{a^{2}+b^{2}}{p}\right)=-1$. As

$$
\left(\sqrt{a^{2}+b^{2}}\right)^{p}=\sqrt{a^{2}+b^{2}}\left(a^{2}+b^{2}\right)^{\frac{p-1}{2}} \equiv-\sqrt{a^{2}+b^{2}}(\bmod p),
$$

we see that

$$
\begin{aligned}
\left(b+a d / c+\sqrt{a^{2}+b^{2}}\right)^{p} & \equiv(b+a d / c)^{p}+\left(\sqrt{a^{2}+b^{2}}\right)^{p} \\
& \equiv b+a d / c-\sqrt{a^{2}+b^{2}}(\bmod p)
\end{aligned}
$$

Thus

$$
\begin{aligned}
\left(b+a d / c+\sqrt{a^{2}+b^{2}}\right)^{p-1} & \equiv \frac{b+a d / c-\sqrt{a^{2}+b^{2}}}{b+a d / c+\sqrt{a^{2}+b^{2}}} \\
& \equiv \frac{\left(b-\sqrt{a^{2}+b^{2}}\right) c}{a d}(\bmod p)
\end{aligned}
$$

Combining this with (2.2) we obtain

$$
\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}} \equiv\left(\frac{b+a d / c}{p}\right) \frac{\left(b-\sqrt{a^{2}+b^{2}}\right) c}{a d}(\bmod p) .
$$

Now applying the evaluation of $\left(\frac{b+a d / c}{p}\right)$ we obtain (ii) and hence the theorem is proved.
Remark 2.1 When $2 \mid a$ and $a^{2}+b^{2}$ is a prime, Theorem 2.1(i) was known to E. Lehmer [Le2].
Lemma 2.1. Let $D, m, n \in \mathbb{Z}$ with $m^{2}-D n^{2}=-4$ and $2 \mid m$. Then

$$
m \equiv \begin{cases}0(\bmod 4) & \text { if } 2 \nmid D \text { or } 8 \mid D-4, \\ 2(\bmod 4) & \text { if } 4 \mid D-2 \text { or } 8 \mid D\end{cases}
$$

Proof. As $\left(\frac{m}{2}\right)^{2}-\frac{D n^{2}}{4}=-1$ we see that $4 \mid D n^{2}$ and $16 \nmid D n^{2}$. If $4 \mid D$, then $2 \nmid n$. Thus $m / 2 \equiv(m / 2)^{2}=n^{2} D / 4-1 \equiv D / 4-1(\bmod 2)$ and so $m \equiv D / 2-2(\bmod 4)$. If $4 \mid D-2$, then $2 \mid n$ and so $\left(\frac{m}{2}\right)^{2}=D\left(\frac{n}{2}\right)^{2}-1 \equiv$ $1(\bmod 2)$ and so $4 \mid m-2$. If $2 \nmid D$, then $4 \mid n^{2}$ and $16 \nmid n^{2}$. Thus $n \equiv 2(\bmod 4)$. Hence $\left(\frac{m}{2}\right)^{2}=D\left(\frac{n}{2}\right)^{2}-1 \equiv 0(\bmod 2)$ and so $4 \mid m$. Now the proof is complete.

Theorem 2.2. Let $D, m, n \in \mathbb{Z}$ with $m^{2}-D n^{2}=-4$. Let $p \equiv 1(\bmod 4)$ be a prime such that $p \nmid$ Dn. Let $p=c^{2}+d^{2}(c, d \in \mathbb{Z})$ with $2 \nmid c$ and let

$$
\delta= \begin{cases}\left(\frac{m c+2 d}{D}\right) & \text { if } 2 \nmid m, \\ (-1)^{\frac{\left(\frac{m}{2} c+d\right)^{2}-1}{8}+\frac{d}{2}}\left(\frac{\frac{m}{2} c+d}{D / 2}\right) & \text { if } 4 \mid D-2, \\ (-1)^{\frac{\left(\frac{m}{2} c+d\right)^{2}-1}{8}+\frac{d}{2}\left(\frac{\frac{m}{2} c+d}{D / 8}\right)} & \text { if } 8 \mid D, \\ \left(\frac{c-\frac{m}{2} d}{D}\right) & \text { if } 2 \nmid D \text { and } 2 \mid m, \\ \left(\frac{c-\frac{m}{2} d}{D / 4}\right) & \text { if } 8 \mid D-4 .\end{cases}
$$

Then

$$
\left(\frac{m+n \sqrt{D}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\delta(\bmod p) & \text { if }\left(\frac{D}{p}\right)=1 \\ \delta \frac{c}{d} \cdot \frac{m-n \sqrt{D}}{2}(\bmod p) & \text { if }\left(\frac{D}{p}\right)=-1\end{cases}
$$

Proof. We first assume $\left(\frac{D}{p}\right)=1$. As $m^{2}-D n^{2}=-4$ we have $\left(\frac{(m+n \sqrt{D}) / 2}{p}\right)$ $\neq 0$. If $2 \nmid m$, then clearly $2 \nmid D n$. Taking $a=2$ and $b=m$ in Theorem 2.1(i) we see that

$$
\begin{aligned}
\left(\frac{(m+n \sqrt{D}) / 2}{p}\right) & =\left(\frac{\left(m+\sqrt{2^{2}+m^{2}}\right) / 2}{p}\right)=\left(\frac{m c+2 d}{2^{2}+m^{2}}\right) \\
& =\left(\frac{m c+2 d}{D n^{2}}\right)=\left(\frac{m c+2 d}{D}\right)
\end{aligned}
$$

So the result is true. If $4 \mid D-2$ or $8 \mid D$, then clearly $2 \mid m$. By Lemma 2.1 we have $m \equiv 2(\bmod 4)$ and so $\frac{D n^{2}}{8}=\frac{m^{2}+4}{8} \equiv 1(\bmod 2)$. Thus applying Theorem 2.1(i) and the fact $\left(\frac{2}{p}\right)=(-1)^{\frac{p-1}{4}}=(-1)^{\frac{d}{2}}$ we see that

$$
\begin{aligned}
\left(\frac{(m+n \sqrt{D}) / 2}{p}\right) & =\left(\frac{\frac{m}{2}+\sqrt{\left(\frac{m}{2}\right)^{2}+1}}{p}\right)=\left(\frac{2}{p}\right)(-1)^{\frac{\left(\frac{m}{2} c+d\right)^{2}-1}{8}}\left(\frac{\frac{m}{2} c+d}{\left(m^{2}+4\right) / 8}\right) \\
& =(-1)^{\frac{\left(\frac{m}{2} c+d\right)^{2}-1}{8}+\frac{d}{2}}\left(\frac{\frac{m}{2} c+d}{D n^{2} / 8}\right)=\delta .
\end{aligned}
$$

If $2 \nmid D$ and $2 \mid m$ or if $8 \mid D-4$, by Lemma 2.1 we have $4 \mid m$ and so $\frac{D n^{2}}{4}=\left(\frac{m}{2}\right)^{2}+1 \equiv 1(\bmod 2)$. Thus applying Theorem 2.1(i) we have

$$
\begin{aligned}
\left(\frac{(m+n \sqrt{D}) / 2}{p}\right) & =\left(\frac{\frac{m}{2}+\sqrt{\left(\frac{m}{2}\right)^{2}+1}}{p}\right)=\left(\frac{2}{p}\right)(-1)^{\frac{d}{2}}\left(\frac{c-\frac{m}{2} d}{\left(\frac{m}{2}\right)^{2}+1}\right) \\
& =\left(\frac{c-\frac{m}{2} d}{D n^{2} / 4}\right)=\delta
\end{aligned}
$$

When $\left(\frac{D}{p}\right)=-1$, one can similarly prove the result by using Theorem 2.1(ii). Thus the theorem is proved.

As consequences of Theorem 2.2 we have:
Corollary 2.1. Suppose that $p \equiv 1(\bmod 4)$ is a prime and $p=c^{2}+d^{2}(c, d \in$ $\mathbb{Z})$ with $2 \mid d$. Then

$$
(1+\sqrt{2})^{\frac{p-1}{2}} \equiv \begin{cases}(-1)^{\frac{(c+d)^{2}-1}{8}}(\bmod p) & \text { if } p \equiv 1(\bmod 8), \\ -(-1)^{\frac{(c+d)^{2}-1}{8} \frac{c}{d}(1-\sqrt{2})(\bmod p)} & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

and

$$
\left(\frac{1+\sqrt{5}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{c+2 d}{5}\right)(\bmod p) & \text { if } p \equiv 1,9(\bmod 20) \\ \left(\frac{c+2 d}{5}\right) \frac{c}{d} \cdot \frac{1-\sqrt{5}}{2}(\bmod p) & \text { if } p \equiv 13,17(\bmod 20)\end{cases}
$$

Proof. Taking $m=n=2$ and $D=2$ in Theorem 2.2 we obtain the congruence for $(1+\sqrt{2})^{\frac{p-1}{2}}(\bmod p)$. Taking $m=n=1$ and $D=5$ in Theorem 2.2 we obtain the remaining result.
Remark 2.2 When $p \equiv 1(\bmod 8)$ is a prime and $p=c^{2}+d^{2}$ with $2 \mid d$, the congruence $(1+\sqrt{2})^{\frac{p-1}{2}} \equiv(-1)^{\frac{p-1}{8}+\frac{d}{4}}(\bmod p)$ was observed by Lehmer in [Le4].

Using Theorem 2.2 one can also deduce the following results.
Corollary 2.2. Suppose that $p \equiv 1(\bmod 4)$ is a prime and $p=c^{2}+d^{2}(c, d \in$ $\mathbb{Z})$ with $2 \mid$ d. Then

$$
\begin{aligned}
& (3+\sqrt{10})^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{(3 c+d)^{2}-1}{8}+\frac{d}{2}}\left(\frac{3 c+d}{5}\right)(\bmod p) & \text { if } p \equiv 1,9,13,37(\bmod 40), \\
(-1)^{\frac{(3 c+d)^{2}-1}{8}+\frac{d}{2}}\left(\frac{3 c+d}{5}\right) \frac{c}{d}(3-\sqrt{10})(\bmod p) & \text { if } p \equiv 17,21,29,33(\bmod 40)\end{cases}
\end{aligned}
$$

and

$$
\left(\frac{3+\sqrt{13}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{3 c+2 d}{13}\right)(\bmod p) & \text { if } p \equiv \pm 1, \pm 3, \pm 4(\bmod 13) \\ \left(\frac{3 c+2 d}{13}\right) \frac{c}{d} \cdot \frac{3-\sqrt{13}}{2}(\bmod p) & \text { if } p \equiv \pm 2, \pm 5, \pm 6(\bmod 13)\end{cases}
$$

Corollary 2.3. Suppose that $p \equiv 1(\bmod 4)$ is a prime and $p=c^{2}+d^{2}(c, d \in$ $\mathbb{Z})$ with $2 \mid d$. Then

$$
\begin{aligned}
& (4+\sqrt{17})^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\left(\frac{c-4 d}{17}\right)(\bmod p) & \text { if } p \equiv \pm 1, \pm 2, \pm 4, \pm 8(\bmod 17), \\
\left(\frac{c-4 d}{17}\right) \frac{c}{d}(4-\sqrt{17})(\bmod p) & \text { if } p \equiv \pm 3, \pm 5, \pm 6, \pm 7(\bmod 17)\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& (5+\sqrt{26})^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{(5 c+d)^{2}-1}{8}+\frac{d}{2}}\left(\frac{5 c+d}{13}\right)(\bmod p) & \text { if }\left(\frac{p}{13}\right)=(-1)^{\frac{p-1}{4}} \\
(-1)^{\frac{(5 c+d)^{2}-1}{8}}+\frac{d}{2}\left(\frac{5 c+d}{13}\right) \frac{c}{d}(5-\sqrt{26})(\bmod p) & \text { if }\left(\frac{p}{13}\right)=-(-1)^{\frac{p-1}{4}} .\end{cases}
\end{aligned}
$$

Corollary 2.4. Suppose that $p \equiv 1(\bmod 4)$ is a prime and $p=c^{2}+d^{2}(c, d \in$ $\mathbb{Z})$ with $2 \mid d$. Then

$$
\left(\frac{5+\sqrt{29}}{2}\right)^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{5 c+2 d}{29}\right)(\bmod p) & \text { if }\left(\frac{p}{29}\right)=1, \\ \left(\frac{5 c+2 d}{29}\right) \frac{c}{d} \cdot \frac{5-\sqrt{29}}{2}(\bmod p) & \text { if }\left(\frac{p}{29}\right)=-1\end{cases}
$$

and

$$
(6+\sqrt{37})^{\frac{p-1}{2}} \equiv \begin{cases}\left(\frac{c-6 d}{37}\right)(\bmod p) & \text { if }\left(\frac{p}{37}\right)=1 \\ \left(\frac{c-6 d}{37}\right) \frac{c}{d}(6-\sqrt{37})(\bmod p) & \text { if }\left(\frac{p}{37}\right)=-1\end{cases}
$$

3. Congruences for $U_{\frac{p \pm 1}{2}}\left(b,-k^{2}\right)(\bmod p)$ when $p=c^{2}+d^{2}$.

For $a, b \in \mathbb{Z}$ let $\left\{U_{n}(b, a)\right\}$ and $\left\{V_{n}(b, a)\right\}$ be the Lucas sequences defined by (1.1) and (1.2). In the section we determine the values of $U_{\frac{p-1}{2}}\left(b,-k^{2}\right)$ and $V_{\frac{p-1}{2}}\left(b,-k^{2}\right)(\bmod p)$ and give criteria for $p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right)\right.$, where $b, k \in \mathbb{Z}$ and p is a prime such that $p=c^{2}+d^{2} \equiv 1(\bmod 4)$.

Theorem 3.1. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid$ d. Let $b, k \in \mathbb{Z}$ with $(k, b)=1$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Let

$$
I= \begin{cases}\left(\frac{b c+2 k d}{b^{2}+4 k^{2}}\right) & \text { if } 2 \nmid b, \\ (-1)^{\left.\frac{(b}{2} c+k d\right)^{2}-1} \\ 8 & \frac{d}{2}\left(\frac{\frac{b}{2} c+k d}{\left(\left(\frac{b}{2}\right)^{2}+k^{2}\right) / 2}\right) \\ \left(\frac{k c-\frac{b}{2} d}{\left(\frac{b}{2}\right)^{2}+k^{2}}\right) & \text { if } 4 \mid b,\end{cases}
$$

Then

$$
U_{\frac{p-1}{2}}\left(b,-k^{2}\right) \equiv \begin{cases}0(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\ -\frac{c}{k d} I(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1\end{cases}
$$

and

$$
V_{\frac{p-1}{2}}\left(b,-k^{2}\right) \equiv \begin{cases}2 I(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1 \\ \frac{b c}{k d} I(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1\end{cases}
$$

Proof. If $2 \nmid b$, taking $a=2 k$ in Theorem 2.1 we see that

$$
\begin{aligned}
& \left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\left(\frac{b c+2 k d}{b^{2}+4 k^{2}}\right)(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\
\left(\frac{b c+2 k d}{b^{2}+4 k^{2}}\right) \frac{c}{d} \cdot \frac{b \mp \sqrt{b^{2}+4 k^{2}}}{2 k}(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Thus

$$
\begin{aligned}
U_{\frac{p-1}{2}}\left(b,-k^{2}\right) & =\frac{1}{\sqrt{b^{2}+4 k^{2}}}\left\{\left(\frac{b+\sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}}-\left(\frac{b-\sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}}\right\} \\
& \equiv \begin{cases}0(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\
-\frac{c}{k d}\left(\frac{b c+2 k d}{b^{2}+4 k^{2}}\right)(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
V_{\frac{p-1}{2}}\left(b,-k^{2}\right) & =\left(\frac{b+\sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}}+\left(\frac{b-\sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}2\left(\frac{b c+2 k d}{b^{2}+4 k^{2}}\right)(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\
\frac{b c}{k d}\left(\frac{b c+2 k d}{b^{2}+4 k^{2}}\right)(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

If $2 \| b$, then $2 \nmid k$. By Theorem 2.1 and the fact $\left(\frac{2}{p}\right)=(-1)^{\frac{d}{2}}$ we have

$$
\begin{aligned}
& \left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left(\frac{2}{p}\right)\left(\frac{\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left\{\begin{array}{l}
(-1)^{\frac{\left(\frac{b}{2} c+k d\right)^{2}-1}{8}+\frac{d}{2}}\left(\frac{\frac{b}{2} c+k d}{\left(\left(\frac{b}{2}\right)^{2}+k^{2}\right) / 2}\right)(\bmod p) \quad \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\
(-1)^{\frac{\left(\frac{b}{2} c+k d\right)^{2}-1}{8}+\frac{d}{2}}\left(\frac{\frac{b}{2} c+k d}{\left(\left(\frac{b}{2}\right)^{2}+k^{2}\right) / 2}\right) \frac{c}{d} \cdot \frac{\frac{b}{2} \mp \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{k}(\bmod p) \\
\text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1 .
\end{array}\right.
\end{aligned}
$$

This together with (1.3) and (1.4) yields the result in this case.
If $4 \mid b$, using Theorem 2.1 we see that

$$
\begin{aligned}
& \left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left(\frac{2}{p}\right)\left(\frac{\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}\left(\frac{k c-\frac{b}{2} d}{\left(\frac{b}{2}\right)^{2}+k^{2}}\right)(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\
\left(\frac{k c-\frac{b}{2} d}{\left(\frac{b}{2}\right)^{2}+k^{2}}\right) \frac{c}{d} \cdot \frac{\frac{b}{2} \mp \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{k}(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1 .\end{cases}
\end{aligned}
$$

Now applying (1.3) and (1.4) we deduce the result. The proof is now complete.
Remark 3.1 Let $a, b \in \mathbb{Z}$ and p be an odd prime such that $\left(\frac{a}{p}\right)=1$ and $p \nmid b^{2}-4 a$. It is well known that $p \left\lvert\, U_{\left(p-\left(\frac{b^{2}-4 a}{p}\right)\right) / 2}(b, a)\right.$, see [L]. Thus, if $p \equiv 1(\bmod 4), p \nmid k$ and $\left(\frac{b^{2}+4 k^{2}}{p}\right)=1$, then $p \left\lvert\, U_{\frac{p-1}{2}}\left(b,-k^{2}\right)\right.$.

Putting $b=1,2,3,8$ and $k=1$ in Theorem 3.1 we deduce the following results.

Corollary 3.1. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Let $F_{n}=U_{n}(1,-1)$ and $L_{n}=V_{n}(1,-1)$ be the Fibonacci and Lucas sequences respectively. Then

$$
F_{\frac{p-1}{2}} \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv 1,9(\bmod 20) \\ -\left(\frac{c+2 d}{5}\right) \frac{c}{d}(\bmod p) & \text { if } p \equiv 13,17(\bmod 20)\end{cases}
$$

and

$$
L_{\frac{p-1}{2}} \equiv \begin{cases}2\left(\frac{c+2 d}{5}\right)(\bmod p) & \text { if } p \equiv 1,9(\bmod 20) \\ \left(\frac{c+2 d}{5}\right) \frac{c}{d}(\bmod p) & \text { if } p \equiv 13,17(\bmod 20)\end{cases}
$$

Corollary 3.2. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Then

$$
U_{\frac{p-1}{2}}(2,-1) \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv 1(\bmod 8) \\ (-1)^{\frac{(c+d)^{2}-1}{8}} \frac{c}{d}(\bmod p) & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

and

$$
V_{\frac{p-1}{2}}(2,-1) \equiv \begin{cases}2(-1)^{\frac{(c+d)^{2}-1}{8}}(\bmod p) & \text { if } p \equiv 1(\bmod 8), \\ -2(-1)^{\frac{(c+d)^{2}-1}{8}} \frac{c}{d}(\bmod p) & \text { if } p \equiv 5(\bmod 8)\end{cases}
$$

Corollary 3.3. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Then

$$
U_{\frac{p-1}{2}}(3,-1) \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv \pm 1, \pm 3, \pm 4(\bmod 13) \\ -\left(\frac{3 c+2 d}{13}\right) \frac{c}{d}(\bmod p) & \text { if } p \equiv \pm 2, \pm 5, \pm 6(\bmod 13)\end{cases}
$$

and

$$
V_{\frac{p-1}{2}}(3,-1) \equiv \begin{cases}2\left(\frac{3 c+2 d}{13}\right)(\bmod p) & \text { if } p \equiv \pm 1, \pm 3, \pm 4(\bmod 13) \\ 3\left(\frac{3 c+2 d}{13}\right) \frac{c}{d}(\bmod p) & \text { if } p \equiv \pm 2, \pm 5, \pm 6(\bmod 13)\end{cases}
$$

Corollary 3.4. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Then

$$
U_{\frac{p-1}{2}}(8,-1) \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv \pm 1, \pm 2, \pm 4, \pm 8(\bmod 17) \\ -\left(\frac{c-4 d}{17}\right) \frac{c}{d}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5, \pm 6, \pm 7(\bmod 17)\end{cases}
$$

and

$$
V_{\frac{p-1}{2}}(8,-1) \equiv \begin{cases}2\left(\frac{c-4 d}{17}\right)(\bmod p) & \text { if } p \equiv \pm 1, \pm 2, \pm 4, \pm 8(\bmod 17) \\ \left(\frac{c-4 d}{17}\right) \frac{8 c}{d}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5, \pm 6, \pm 7(\bmod 17)\end{cases}
$$

Theorem 3.2. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Let $b, k \in \mathbb{Z}$ with $(k, b)=1$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Let I be as in Theorem 3.1. Then

$$
U_{\frac{p+1}{2}}\left(b,-k^{2}\right) \equiv \begin{cases}I(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\ 0(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1\end{cases}
$$

and

$$
V_{\frac{p+1}{2}}\left(b,-k^{2}\right) \equiv \begin{cases}b I(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=1, \\ -\frac{2 k c}{d} I(\bmod p) & \text { if }\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1 .\end{cases}
$$

Proof. Let $U_{n}=U_{n}\left(b,-k^{2}\right)$ and $V_{n}=V_{n}\left(b,-k^{2}\right)$. From (1.3) and (1.4) we see that

$$
\begin{equation*}
U_{\frac{p+1}{2}}=\frac{1}{2}\left(b U_{\frac{p-1}{2}}+V_{\frac{p-1}{2}}\right) \text { and } V_{\frac{p+1}{2}}=\frac{1}{2}\left(\left(b^{2}+4 k^{2}\right) U_{\frac{p-1}{2}}+b V_{\frac{p-1}{2}}\right) . \tag{3.1}
\end{equation*}
$$

Thus applying Theorem 3.1 we obtain the result.
Theorem 3.3. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Let $b, k \in \mathbb{Z}$ with $(k, b)=1, p \nmid k$ and $\left(\frac{b^{2}+4 k^{2}}{p}\right)=1$. Let I be as in Theorem 3.1. Then $p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right)\right.$ if and only if $I=\left(\frac{2 k}{p}\right)$.

Proof. Set $U_{n}=U_{n}\left(b,-k^{2}\right)$ and $V_{n}=V_{n}\left(b,-k^{2}\right)$. From [Su3, Lemma 6.1] we know that

$$
\begin{equation*}
p \left\lvert\, U_{\frac{p-1}{4}} \Longleftrightarrow V_{\frac{p-1}{2}} \equiv 2\left(-k^{2}\right)^{\frac{p-1}{4}} \equiv 2\left(\frac{2 k}{p}\right)(\bmod p)\right. \tag{3.2}
\end{equation*}
$$

Thus applying Theorem 3.1 we have

$$
\begin{aligned}
p \left\lvert\, U_{\frac{p-1}{4}}\right. & \Longleftrightarrow V_{\frac{p-1}{2}} \equiv 2\left(\frac{2 k}{p}\right)(\bmod p) \Longleftrightarrow 2 I \equiv 2\left(\frac{2 k}{p}\right)(\bmod p) \\
& \Longleftrightarrow I=\left(\frac{2 k}{p}\right) .
\end{aligned}
$$

This proves the theorem.
Remark 3.2 Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Let $b, k \in \mathbb{Z}$ with $(k, b)=1, p \nmid k$ and $\left(\frac{b^{2}+4 k^{2}}{p}\right)=-1$. By Theorem 3.1 we have $V_{\frac{p-1}{2}}\left(b,-k^{2}\right) \equiv \frac{b c}{k d} I(\bmod p)$. As $p \nmid k\left(b^{2}+4 k^{2}\right)$ we see that $\frac{b c}{k d} \not \equiv \pm 2(\bmod p)$ and so $V_{\frac{p-1}{2}}\left(b,-k^{2}\right) \not \equiv 2\left(\frac{2 k}{p}\right)(\bmod p)$. Thus, by (3.2) we have $p \nmid U_{\frac{p-1}{4}}\left(b,-k^{2}\right)$.

From (1.3) and (1.4) we know that

$$
U_{n}\left(b c, a c^{2}\right)=c^{n-1} U_{n}(b, a) \quad \text { and } \quad V_{n}\left(b c, a c^{2}\right)=c^{n} V_{n}(b, a) .
$$

Thus $U_{n}\left(b,-k^{2}\right)=(k, b)^{n-1} U_{n}\left(b^{\prime},-k^{\prime 2}\right)$ and $V_{n}\left(b,-k^{2}\right)=(k, b)^{n} V_{n}\left(b^{\prime},-k^{\prime 2}\right)$, where $k^{\prime}=k /(k, b)$ and $b^{\prime}=b /(k, b)$. Using this we may extend Theorems 3.1-3.3 to the case $(k, b)>1$.

Putting $k=1$ in Theorem 3.3 we obtain the following result.

Corollary 3.5. Let $p \equiv 1(\bmod 4)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Let $b \in \mathbb{Z}$ and $\left(\frac{b^{2}+4}{p}\right)=1$. Let $\left\{U_{n}\right\}$ be given by $U_{0}=0, U_{1}=1$ and $U_{n+1}=b U_{n}+U_{n-1}(n \geq 1)$. Then

$$
p \left\lvert\, U_{\frac{p-1}{4}} \Longleftrightarrow\left\{\begin{array}{ll}
\left(\frac{b c+2 d}{b^{2}+4}\right)=(-1)^{\frac{d}{2}} & \text { if } 2 \nmid b, \\
\left(\frac{b}{2} c+d\right. \\
\left(b^{2}+4\right) / 8
\end{array}\right)=(-1)^{\left.\frac{(b}{2} c+d\right)^{2}-1} \frac{8}{8}\right., ~ i f ~ 2 \| b, ~\left(\frac{\text { if } 4 \mid b .}{\left(\frac{c-\frac{b}{2} d}{1+b^{2} / 4}\right)=(-1)^{\frac{d}{2}}} \quad\right.
$$

Remark 3.3 Let $p \equiv 1,9(\bmod 20)$ be a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. Then clearly $5 \mid c$ or $5 \mid d$. Let $F_{n}=U_{n}(1,-1)$ be the Fibonacci sequence. From Corollary 3.5 we deduce

$$
p \left\lvert\, F_{\frac{p-1}{4}} \Longleftrightarrow \begin{cases}5 \mid c & \text { if } p \equiv 9,21(\bmod 40), \\ 5 \mid d & \text { if } p \equiv 1,29(\bmod 40)\end{cases}\right.
$$

This result is due to E. Lehmer [Le1].
4. Congruences for $\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ when $p=A x^{2}+2 B x y+C y^{2}$ and $A C-B^{2}=a^{2}+b^{2}$.

Lemma 4.1 ([E2], [Su1, Proposition 1], [Su4, Lemma 2.1]). Let $m \in$ \mathbb{N} and $a, b \in \mathbb{Z}$ with $2 \nmid m$ and $\left(m, a^{2}+b^{2}\right)=1$. Then

$$
\left(\frac{a+b i}{m}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{m}\right)
$$

Theorem 4.1. Let p be an odd prime and $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$. Then

$$
\left(\frac{b+\sqrt{a^{2}+b^{2}}}{2 \sqrt{a^{2}+b^{2}}}\right)^{\frac{p-1}{2}} \equiv \begin{cases} \pm 1(\bmod p) & \text { if }\left(\frac{b+a i}{p}\right)_{4}= \pm 1 \\ \pm \frac{b-\sqrt{a^{2}+b^{2}}}{a}(\bmod p) & \text { if }\left(\frac{b+a i}{p}\right)_{4}= \pm i\end{cases}
$$

Proof. Substituting a, b, c by $-a^{2}, 2 b,-a$ in [Su5, Theorem 3.1 and Corollary 3.1] we see that

$$
\begin{aligned}
& U_{\frac{p-1}{2}}\left(2 b,-a^{2}\right) \\
& \equiv \begin{cases}0(\bmod p) & \text { if } 4 \mid p-1 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=1, \\
\frac{1}{a}\left(4 a^{2}+4 b^{2}\right)^{\frac{p-1}{4}}\left(\frac{2 b+2 a i}{p}\right)_{4} i(\bmod p) & \text { if } 4 \mid p-1 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=-1, \\
2\left(4 a^{2}+4 b^{2}\right)^{\frac{p-3}{4}}\left(\frac{2 b+2 a i}{p}\right)_{4}(\bmod p) & \text { if } 4 \mid p-3 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=1, \\
-\frac{2 b}{a}\left(4 a^{2}+4 b^{2}\right)^{\frac{p-3}{4}}\left(\frac{2 b+2 a i}{p}\right)_{4} i(\bmod p) & \text { if } 4 \mid p-3 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=-1 \\
14\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{\frac{p-1}{2}}\left(2 b,-a^{2}\right) \\
& \equiv \begin{cases}2\left(4 a^{2}+4 b^{2}\right)^{\frac{p-1}{4}}\left(\frac{2 b+2 a i}{p}\right)_{4}(\bmod p) & \text { if } 4 \mid p-1 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=1, \\
-\frac{2 b}{a}\left(4 a^{2}+4 b^{2}\right)^{\frac{p-1}{4}}\left(\frac{2 b+2 a i}{p}\right)_{4} i(\bmod p) & \text { if } 4 \mid p-1 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=-1, \\
0(\bmod p) & \text { if } 4 \mid p-3 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=1, \\
\frac{1}{a}\left(4 a^{2}+4 b^{2}\right)^{\frac{p+1}{4}}\left(\frac{2 b+2 a i}{p}\right)_{4} i(\bmod p) & \text { if } 4 \mid p-3 \text { and }\left(\frac{a^{2}+b^{2}}{p}\right)=-1\end{cases}
\end{aligned}
$$

Clearly $\left(\frac{2 b+2 a i}{p}\right)_{4}=\left(\frac{b+a i}{p}\right)_{4}$. By Lemma 4.1, $\left(\frac{b+a i}{p}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{p}\right)$. Thus, if $\left(\frac{b+a i}{p}\right)_{4}= \pm 1$, then $\left(\frac{a^{2}+b^{2}}{p}\right)=1$; if $\left(\frac{b+a i}{p}\right)_{4}= \pm i$, then $\left(\frac{a^{2}+b^{2}}{p}\right)=-1$. Hence applying (1.3), (1.4) and the above we obtain

$$
\begin{aligned}
\left(b+\sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{2}} & =\sqrt{a^{2}+b^{2}} U_{\frac{p-1}{2}}\left(2 b,-a^{2}\right)+\frac{1}{2} V_{\frac{p-1}{2}}\left(2 b,-a^{2}\right) \\
& \equiv \begin{cases} \pm\left(2 \sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{2}}(\bmod p) & \text { if }\left(\frac{b+a i}{p}\right)_{4}= \pm 1 \\
\pm \frac{b-\sqrt{a^{2}+b^{2}}}{a}\left(2 \sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{2}}(\bmod p) & \text { if }\left(\frac{b+a i}{p}\right)_{4}= \pm i\end{cases}
\end{aligned}
$$

This yields the result.
Remark 4.1 When $\left(\frac{b+a i}{p}\right)_{4}= \pm 1$ (or $\left(\frac{a^{2}+b^{2}}{p}\right)=1$), Theorem 4.1 can also be deduced from [Su4, Theorem 2.4]. Note that $\left(\frac{a i}{p}\right)_{4}=\left(\frac{i}{p}\right)_{4}=\left(\frac{2}{p}\right)$. We see that the result is true when $p \mid b$. Now assume $p \nmid b$. As $\left(\frac{a}{b}\right)^{2}+1=\left(\frac{\sqrt{a^{2}+b^{2}}}{b}\right)^{2}$, by [Su4, Theorem 2.4] we have

$$
\left(\frac{a+b i}{p}\right)_{4}=\left(\frac{a / b+i}{p}\right)_{4}=\left(\frac{\sqrt{a^{2}+b^{2}} / b}{p}\right)\left(\frac{\sqrt{a^{2}+b^{2}} / b+1}{p}\right)
$$

and so

$$
\begin{aligned}
\left(\frac{b+a i}{p}\right)_{4} & =\left(\frac{b-a i}{p}\right)_{4}=\left(\frac{i}{p}\right)_{4}\left(\frac{a+b i}{p}\right)_{4}=\left(\frac{2}{p}\right)\left(\frac{a+b i}{p}\right)_{4} \\
& =\left(\frac{2 \sqrt{a^{2}+b^{2}}}{p}\right)\left(\frac{b+\sqrt{a^{2}+b^{2}}}{p}\right)
\end{aligned}
$$

This yields the result.
Corollary 4.1. Let p be an odd prime. Then

$$
\left(\frac{1+\sqrt{2}}{\sqrt{2}}\right)^{\frac{p-1}{2}} \equiv \begin{cases}(-1)^{\frac{p \neq 1}{8}}(\bmod p) & \text { if } p \equiv \pm 1(\bmod 8) \\ (-1)^{\frac{p+3}{8}}(1-\sqrt{2})(\bmod p) & \text { if } p \equiv \pm 5(\bmod 8)\end{cases}
$$

Proof. Taking $a=b=1$ in Theorem 4.1 we obtain

$$
\left(\frac{1+\sqrt{2}}{2 \sqrt{2}}\right)^{\frac{p-1}{2}} \equiv \begin{cases} \pm 1(\bmod p) & \text { if }\left(\frac{1+i}{p}\right)_{4}= \pm 1 \\ \pm(1-\sqrt{2})(\bmod p) & \text { if }\left(\frac{1+i}{p}\right)_{4}= \pm i\end{cases}
$$

To see the result, we note that $2^{\frac{p-1}{2}} \equiv(-1)^{\frac{p^{2}-1}{8}}(\bmod p)$ and

Corollary 4.2. Let $p \neq 2,5$ be a prime. Then

$$
\left(\frac{1+\sqrt{5}}{2 \sqrt{5}}\right)^{\frac{p-1}{2}} \equiv \begin{cases}1(\bmod p) & \text { if } p \equiv \pm 1(\bmod 20) \\ -1(\bmod p) & \text { if } p \equiv \pm 9(\bmod 20) \\ \frac{1-\sqrt{5}}{2}(\bmod p) & \text { if } p \equiv \pm 3(\bmod 20) \\ \frac{-1+\sqrt{5}}{2}(\bmod p) & \text { if } p \equiv \pm 7(\bmod 20)\end{cases}
$$

Proof. Set $p^{*}=(-1)^{\frac{p-1}{2}} p$. Taking $a=2$ and $b=1$ in Theorem 4.1 and noting that

$$
\left(\frac{1+2 i}{p}\right)_{4}=\left(\frac{1+2 i}{p^{*}}\right)_{4}=\left(\frac{p^{*}}{1+2 i}\right)_{4}= \begin{cases} \pm 1 & \text { if } p^{*} \equiv \pm 1(\bmod 5) \\ \pm i & \text { if } p^{*} \equiv \pm 2(\bmod 5)\end{cases}
$$

we obtain the result.
Corollary 4.3. Let $p \neq 2,13$ be a prime. Then

$$
\left(\frac{3+\sqrt{13}}{2 \sqrt{13}}\right)^{\frac{p-1}{2}} \equiv \begin{cases}1(\bmod p) & \text { if } p \equiv \pm 1, \pm 9, \pm 23(\bmod 52) \\ -1(\bmod p) & \text { if } p \equiv \pm 3, \pm 17, \pm 25(\bmod 52) \\ \frac{3-\sqrt{13}}{2}(\bmod p) & \text { if } p \equiv \pm 15, \pm 19, \pm 21(\bmod 52) \\ \frac{-3+\sqrt{13}}{2}(\bmod p) & \text { if } p \equiv \pm 5, \pm 7, \pm 11(\bmod 52)\end{cases}
$$

Proof. Set $p^{*}=(-1)^{\frac{p-1}{2}} p$. Taking $a=2$ and $b=3$ in Theorem 4.1 and noting that

$$
\left(\frac{3+2 i}{p}\right)_{4}=\left(\frac{3+2 i}{p^{*}}\right)_{4}=\left(\frac{p^{*}}{3+2 i}\right)_{4}= \begin{cases} \pm 1 & \text { if } p^{*} \equiv \pm 1, \pm 3, \pm 9(\bmod 13), \\ \pm i & \text { if } p^{*} \equiv \mp 2, \mp 5, \mp 6(\bmod 13)\end{cases}
$$

we deduce the result.
Remark 4.2 Corollaries 4.1-4.3 can also be deduced from [Su2], [SS] and [Su5] respectively.

Corollary 4.4. Let $p \neq 2,17$ be a prime. Then

$$
\left(\frac{4+\sqrt{17}}{\sqrt{17}}\right)^{\frac{p-1}{2}} \equiv \begin{cases}1(\bmod p) & \text { if } p \equiv \pm 1, \pm 4(\bmod 17) \\ -1(\bmod p) & \text { if } p \equiv \pm 2, \pm 8(\bmod 17) \\ 4-\sqrt{17}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5(\bmod 17), \\ -4+\sqrt{17}(\bmod p) & \text { if } p \equiv \pm 6, \pm 7(\bmod 17)\end{cases}
$$

Proof. Using the properties of the quartic Jacobi symbol, one can easily see that

$$
\begin{aligned}
\left(\frac{2}{p}\right)\left(\frac{4+i}{p}\right)_{4} & =\left(\frac{2}{p}\right)\left(\frac{i}{p}\right)_{4}\left(\frac{1-4 i}{p}\right)_{4}=\left(\frac{1-4 i}{p}\right)_{4}=\left(\frac{p}{1-4 i}\right)_{4} \\
& = \begin{cases}1 & \text { if } p \equiv \pm 1, \pm 4(\bmod 17), \\
-1 & \text { if } p \equiv \pm 2, \pm 8(\bmod 17), \\
i & \text { if } p \equiv \pm 3, \pm 5(\bmod 17), \\
-i & \text { if } p \equiv \pm 6, \pm 7(\bmod 17) .\end{cases}
\end{aligned}
$$

Now taking $a=1$ and $b=4$ in Theorem 4.1 and applying the above we obtain the result.

Corollary 4.5. Let $p \neq 2,17$ be a prime. Then

$$
\begin{aligned}
& U_{\frac{p-1}{2}}(8,-1) \\
& \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv \pm 1, \pm 2, \pm 4, \pm 8(\bmod 17) \text { and } 4 \mid p-1, \\
17^{\frac{p-3}{4}}(\bmod p) & \text { if } p \equiv \pm 1, \pm 4(\bmod 17) \text { and } p \equiv 3(\bmod 4), \\
-17^{\frac{p-3}{4}}(\bmod p) & \text { if } p \equiv \pm 2, \pm 8(\bmod 17) \text { and } p \equiv 3(\bmod 4), \\
-17^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5(\bmod 17) \text { and } p \equiv 1(\bmod 4), \\
17^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv \pm 6, \pm 7(\bmod 17) \text { and } p \equiv 1(\bmod 4), \\
4 \cdot 17^{\frac{p-3}{4}}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5(\bmod 17) \text { and } p \equiv 3(\bmod 4), \\
-4 \cdot 17^{\frac{p-3}{4}}(\bmod p) & \text { if } p \equiv \pm 6, \pm 7(\bmod 17) \text { and } p \equiv 3(\bmod 4)\end{cases}
\end{aligned}
$$

and

$$
\begin{aligned}
& V_{\frac{p-1}{2}}(8,-1) \\
& \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv \pm 1, \pm 2, \pm 4, \pm 8(\bmod 17) \text { and } 4 \mid p-3, \\
2 \cdot 17^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv \pm 1, \pm 4(\bmod 17) \text { and } p \equiv 1(\bmod 4), \\
-2 \cdot 17^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv \pm 2, \pm 8(\bmod 17) \text { and } p \equiv 1(\bmod 4), \\
8 \cdot 17^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5(\bmod 17) \text { and } p \equiv 1(\bmod 4), \\
-2 \cdot 17^{\frac{p+1}{4}}(\bmod p) & \text { if } p \equiv \pm 3, \pm 5(\bmod 17) \text { and } p \equiv 3(\bmod 4), \\
-8 \cdot 17^{\frac{p-1}{4}}(\bmod p) & \text { if } p \equiv \pm 6, \pm 7(\bmod 17) \text { and } p \equiv 1(\bmod 4), \\
2 \cdot 17^{\frac{p+1}{4}}(\bmod p) & \text { if } p \equiv \pm 6, \pm 7(\bmod 17) \text { and } p \equiv 3(\bmod 4) .\end{cases}
\end{aligned}
$$

Proof. From (1.3) and (1.4) we have

$$
U_{n}(8,-1)=\frac{1}{2 \sqrt{17}}\left\{(4+\sqrt{17})^{n}-(4-\sqrt{17})^{n}\right\}
$$

and

$$
V_{n}(8,-1)=(4+\sqrt{17})^{n}+(4-\sqrt{17})^{n} .
$$

Thus applying Corollary 4.4 we obtain the result.
Lemma 4.2. Let p be an odd prime, $m \in \mathbb{Z}, 4 \nmid m$ and $p \nmid m$. Let $A \in \mathbb{Z}$, $A=2^{r} A_{0}\left(2 \nmid A_{0}\right),(A, m)=1$ and $p \nmid A$. Suppose $A p=x^{2}+m y^{2}$ with $x, y \in \mathbb{Z},(x, y)=1, x=2^{\alpha} x_{0}, y=2^{\beta} y_{0}$ and $x_{0} \equiv y_{0} \equiv 1(\bmod 4)$.
(i) If $p \equiv 1(\bmod 4)$, then

$$
m^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{p-1}{4}(\alpha+\beta+1)+\frac{r\left(x_{0} y_{0}-1\right)}{4}}\left(\frac{x_{0}}{m A_{0}}\right)\left(\frac{y_{0}}{A_{0}}\right)(\bmod p) & \text { if } 2 \nmid m \\ (-1)^{\frac{p-1}{4}(\alpha+\beta+1)+\frac{x_{0}-1}{4}}\left(\frac{x_{0}}{A m / 2}\right)\left(\frac{y_{0}}{A}\right)(\bmod p) & \text { if } 2 \| m\end{cases}
$$

(ii) If $p \equiv 3(\bmod 4)$, then

$$
m^{\frac{p-3}{4}} \equiv \begin{cases}-(-1)^{\frac{p+1}{4}(\alpha+\beta+1)+\frac{r\left(x_{0} y_{0}-1\right)}{4}}\left(\frac{x_{0}}{m A_{0}}\right)\left(\frac{y_{0}}{A_{0}}\right) \frac{y}{x}(\bmod p) & \text { if } 2 \nmid m \\ -(-1)^{\frac{p+1}{4}(\alpha+\beta+1)+\frac{x_{0}-1}{4}}\left(\frac{x_{0}}{A m / 2}\right)\left(\frac{y_{0}}{A}\right) \frac{y}{x}(\bmod p) & \text { if } 2 \| m\end{cases}
$$

Proof. As $(A, m)=1$ and $(x, y)=1$ we see that $\left(A, x_{0}\right)=\left(A, y_{0}\right)=$ $\left(m, x_{0}\right)=1$ and $p \nmid x y$. It is clear that

$$
\begin{aligned}
\left(\frac{x_{0} y_{0}}{p}\right) & =\left(\frac{x_{0} y_{0}}{A_{0} p}\right)\left(\frac{x_{0} y_{0}}{A_{0}}\right)=\left(\frac{A_{0} p}{x_{0} y_{0}}\right)\left(\frac{x_{0} y_{0}}{A_{0}}\right)=\left(\frac{\left(x^{2}+m y^{2}\right) / 2^{r}}{x_{0} y_{0}}\right)\left(\frac{x_{0} y_{0}}{A_{0}}\right) \\
& =\left(\frac{2^{r}}{x_{0} y_{0}}\right)\left(\frac{m y^{2}}{x_{0}}\right)\left(\frac{x^{2}}{y_{0}}\right)\left(\frac{x_{0} y_{0}}{A_{0}}\right)=\left(\frac{2}{x_{0} y_{0}}\right)^{r}\left(\frac{m}{x_{0}}\right)\left(\frac{x_{0} y_{0}}{A_{0}}\right) \\
& = \begin{cases}\left(\frac{2}{x_{0} y_{0}}\right)^{r}\left(\frac{x_{0}}{m}\right)\left(\frac{x_{0} y_{0}}{A_{0}}\right)=(-1)^{\frac{r\left(x_{0} y_{0}-1\right)}{4}}\left(\frac{x_{0}}{m A_{0}}\right)\left(\frac{y_{0}}{A_{0}}\right) & \text { if } 2 \nmid m, \\
\left(\frac{2}{x_{0}}\right)\left(\frac{m / 2}{x_{0}}\right)\left(\frac{x_{0} y_{0}}{A}\right)=(-1)^{\frac{x_{0}-1}{4}}\left(\frac{x_{0}}{A m / 2}\right)\left(\frac{y_{0}}{A}\right) & \text { if } 2 \| m .\end{cases}
\end{aligned}
$$

Thus

$$
\begin{aligned}
(x / y)^{\frac{p-1}{2}} & \equiv\left(\frac{x}{p}\right)\left(\frac{y}{p}\right)=\left(\frac{2}{p}\right)^{\alpha+\beta}\left(\frac{x_{0} y_{0}}{p}\right) \\
& = \begin{cases}\left(\frac{2}{p}\right)^{\alpha+\beta}(-1)^{\frac{r\left(x_{0} y_{0}-1\right)}{4}}\left(\frac{x_{0}}{m A_{0}}\right)\left(\frac{y_{0}}{A_{0}}\right)(\bmod p) & \text { if } 2 \nmid m \\
\left(\frac{2}{p}\right)^{\alpha+\beta}(-1)^{\frac{x_{0}-1}{4}}\left(\frac{x_{0}}{A m / 2}\right)\left(\frac{y_{0}}{A}\right)(\bmod p) & \text { if } 2 \| m\end{cases}
\end{aligned}
$$

If $p \equiv 1(\bmod 4)$, then $\left(\frac{2}{p}\right)=(-1)^{\frac{p-1}{4}}$ and $m^{\frac{p-1}{4}}=(-1)^{\frac{p-1}{4}}(-m)^{\frac{p-1}{4}} \equiv$ $(-1)^{\frac{p-1}{4}}(x / y)^{\frac{p-1}{2}}(\bmod p)$. If $p \equiv 3(\bmod 4)$, then $\left(\frac{2}{p}\right)=(-1)^{\frac{p+1}{4}}$ and 18
$m^{\frac{p-3}{4}}=(-1)^{\frac{p-3}{4}}(-m)^{\frac{p-3}{4}} \equiv-(-1)^{\frac{p+1}{4}}(x / y)^{\frac{p-3}{2}}=-(-1)^{\frac{p+1}{4}}(x / y)^{\frac{p-1}{2}} \frac{y}{x}$ $(\bmod p)$.

Now putting all the above together we obtain the result.
For an odd prime p and $m \in \mathbb{Z}$ with $\left(\frac{-m}{p}\right)=1$, from the theory of binary quadratic forms we know that p can be represented by some form $A x^{2}+2 B x y+C y^{2}$ of discriminant $-4 m$, where $A, B, C \in \mathbb{Z}$ and A is coprime to a given positive integer. See [Su6, Lemma 3.1].
Theorem 4.2. Let p be an odd prime, $m \in \mathbb{Z}, 4 \nmid m$ and $p \nmid m$. Suppose $p=A x^{2}+2 B x y+C y^{2}$ with $A, B, C, x, y \in \mathbb{Z}, p \nmid A,(A, 2 m)=1$ and $(2 B)^{2}-4 A C=-4 m$. Assume $A x+B y=2^{\alpha} x_{0}, y=2^{\beta} y_{0}$ and $x_{0} \equiv y_{0} \equiv$ $1(\bmod 4)$.
(i) If $p \equiv 1(\bmod 4)$, then

$$
m^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{(m-1) y^{2}-A+1}{4}}\left(\frac{A x+B y}{m}\right)\left(\frac{B}{A}\right)(\bmod p) & \text { if } 2 \nmid m \\ (-1)^{\frac{p-1+A-A^{2}+A m y^{2}}{8}}\left(\frac{A x+B y}{m / 2}\right)\left(\frac{B}{A}\right)(\bmod p) & \text { if } 2 \| m .\end{cases}
$$

(ii) If $p \equiv 3(\bmod 4)$, then

$$
m^{\frac{p-3}{4}} \equiv \begin{cases}(-1)^{\frac{(m-1) y^{2}+A-3}{4}}\left(\frac{A x+B y}{m}\right)\left(\frac{B}{A}\right) \frac{y}{A x+B y}(\bmod p) & \text { if } 2 \nmid m \\ (-1)^{\frac{p-5+A-A^{2}+A m y^{2}}{8}}\left(\frac{A x+B y}{m / 2}\right)\left(\frac{B}{A}\right) \frac{y}{A x+B y}(\bmod p) & \text { if } 2 \| m\end{cases}
$$

Proof. Set $x_{1}=A x+B y$. Then clearly $A p=A^{2} x^{2}+2 A B x y+A C y^{2}=$ $(A x+B y)^{2}+\left(A C-B^{2}\right) y^{2}=x_{1}^{2}+m y^{2}$. As $(A, m)=1$ and $m=A C-B^{2}$ we have $(A, B)=1$. Since $(A, y) \mid p$ and $p \nmid A$ we have $(A, y)=1$. Thus $\left(A, x_{1}\right)=(A, B y)=1$. As $\left(m, x_{1}\right) \mid A p, p \nmid m$ and $(A, m)=1$, we see that $\left(m, x_{1}\right)=1$. Since $x_{1}^{2}+m y^{2}=A p \not \equiv 0\left(\bmod p^{2}\right)$ and $(x, y) \mid p$ we have $p \nmid x_{1} y$ and $\left(x_{1}, y\right)=(A x, y)=(x, y)=1$.

We first assume $2 \nmid m$. It is clear that

$$
\begin{aligned}
\left(\frac{2}{p}\right)^{\alpha+\beta}\left(\frac{x_{0}}{m A}\right)\left(\frac{y_{0}}{A}\right) & =\left(\frac{2}{p}\right)^{\alpha+\beta}\left(\frac{2}{m A}\right)^{\alpha}\left(\frac{A x+B y}{m A}\right)\left(\frac{2}{A}\right)^{\beta}\left(\frac{y}{A}\right) \\
& =\left(\frac{2}{A p}\right)^{\alpha+\beta}\left(\frac{2}{m}\right)^{\alpha}\left(\frac{A x+B y}{m}\right)\left(\frac{B y}{A}\right)\left(\frac{y}{A}\right) \\
& =\left(\frac{2}{x_{1}^{2}+m y^{2}}\right)^{\alpha+\beta}\left(\frac{2}{m}\right)^{\alpha}\left(\frac{A x+B y}{m}\right)\left(\frac{B}{A}\right) .
\end{aligned}
$$

As $x_{1}^{2}+y^{2} \equiv x_{1}^{2}+m y^{2}=A p \equiv 1(\bmod 2)$, we see that $x_{1}+y \equiv 1(\bmod 2)$. If $2 \mid x_{1}$, then $2 \nmid y, y^{2} \equiv 1(\bmod 8)$ and so

$$
\begin{aligned}
&\left(\frac{2}{x_{1}^{2}+m y^{2}}\right)=\left(\frac{2}{x_{1}^{2}+m}\right)=\left(\frac{2}{m}\right)\left(\frac{2}{m x_{1}^{2}+m^{2}}\right)=\left(\frac{2}{m}\right)\left(\frac{2}{m x_{1}^{2}+1}\right) \\
&=(-1)^{\frac{m x_{1}^{2}\left(m x_{1}^{2}+2\right)}{8}}\left(\frac{2}{m}\right)=(-1)^{\frac{m x_{1}^{2}}{4}\left(m \frac{x_{1}^{2}}{2}+1\right)}\left(\frac{2}{m}\right)=(-1)^{\frac{x_{1}}{2}}\left(\frac{2}{m}\right) . \\
& 19
\end{aligned}
$$

If $2 \nmid x_{1}$, then $2 \mid y, x_{1}^{2} \equiv 1(\bmod 8)$ and thus

$$
\left(\frac{2}{x_{1}^{2}+m y^{2}}\right)=\left(\frac{2}{1+m y^{2}}\right)=(-1)^{\frac{m y^{2}\left(m y^{2}+2\right)}{8}}=(-1)^{\frac{m y^{2}}{4}\left(m \frac{y^{2}}{2}+1\right)}=(-1)^{\frac{y}{2}} .
$$

Hence

$$
\begin{aligned}
\left(\frac{2}{x_{1}^{2}+m y^{2}}\right)^{\alpha+\beta}\left(\frac{2}{m}\right)^{\alpha} & = \begin{cases}\left(\frac{2}{m}\right)^{\alpha}\left(\frac{2}{x_{1}^{2}+m y^{2}}\right)^{\alpha}=(-1)^{\frac{x_{1}}{2} \alpha}=(-1)^{\frac{x_{1}}{2}} & \text { if } 2 \mid x_{1}, \\
\left(\frac{2}{x_{1}^{2}+m y^{2}}\right)^{\beta}=(-1)^{\frac{y}{2} \beta}=(-1)^{\frac{y}{2}} & \text { if } 2 \nmid x_{1}\end{cases} \\
& =(-1)^{\frac{x_{y}}{2}}
\end{aligned}
$$

and therefore

$$
\begin{equation*}
\left(\frac{2}{p}\right)^{\alpha+\beta}\left(\frac{x_{0}}{m A}\right)\left(\frac{y_{0}}{A}\right)=(-1)^{\frac{x_{1} y}{2}}\left(\frac{x_{1}}{m}\right)\left(\frac{B}{A}\right) . \tag{4.1}
\end{equation*}
$$

If $p \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
(-1)^{\frac{p-1}{4}+\frac{x_{1} y}{2}} & =(-1)^{\frac{A p-A}{4}+\frac{x_{1} y}{2}}=(-1)^{\frac{x_{1}^{2}+m y^{2}-A}{4}+\frac{2 x_{1} y}{4}} \\
& =(-1)^{\frac{\left(x_{1}+y\right)^{2}-1}{4}}+\frac{(m-1) y^{2}-A+1}{4}
\end{aligned}=(-1)^{\frac{(m-1) y^{2}-A+1}{4}} . ~ .
$$

This together with Lemma 4.2 and (4.1) yields

$$
\begin{aligned}
m^{\frac{p-1}{4}} & \equiv(-1)^{\frac{p-1}{4}}\left(\frac{2}{p}\right)^{\alpha+\beta}\left(\frac{x_{0}}{m A}\right)\left(\frac{y_{0}}{A}\right)=(-1)^{\frac{p-1}{4}+\frac{x_{1} y}{2}}\left(\frac{x_{1}}{m}\right)\left(\frac{B}{A}\right) \\
& =(-1)^{\frac{(m-1) y^{2}-A+1}{4}}\left(\frac{x_{1}}{m}\right)\left(\frac{B}{A}\right)(\bmod p) .
\end{aligned}
$$

Similarly, if $p \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
(-1)^{\frac{p+1}{4}+\frac{x_{1} y}{2}} & =(-1)^{\frac{A p+A}{4}+\frac{x_{1} y}{2}}=(-1)^{\frac{x_{1}^{2}+m y^{2}+A}{4}+\frac{2 x_{1} y}{4}} \\
& =(-1)^{\frac{\left(x_{1}+y\right)^{2}-1}{4}+\frac{(m-1) y^{2}+A+1}{4}}=(-1)^{\frac{(m-1) y^{2}+A+1}{4}} .
\end{aligned}
$$

By Lemma 4.2 and (4.1) we have

$$
\begin{aligned}
m^{\frac{p-3}{4}} & \equiv-(-1)^{\frac{p+1}{4}}\left(\frac{2}{p}\right)^{\alpha+\beta}\left(\frac{x_{0}}{m A}\right)\left(\frac{y_{0}}{A}\right) \frac{y}{x_{1}}=-(-1)^{\frac{p+1}{4}+\frac{x_{1} y}{2}}\left(\frac{x_{1}}{m}\right)\left(\frac{B}{A}\right) \frac{y}{x_{1}} \\
& =(-1)^{\frac{(m-1) y^{2}+A-3}{4}}\left(\frac{x_{1}}{m}\right)\left(\frac{B}{A}\right) \frac{y}{x_{1}}(\bmod p)
\end{aligned}
$$

Now we assume $2 \| m$. As $x_{1}^{2} \equiv x_{1}^{2}+m y^{2}=A p \equiv 1(\bmod 2)$ we have $2 \nmid x_{1}$ and so $\alpha=0$. When $2 \mid y$ we have $A p=x_{1}^{2}+m y^{2} \equiv x_{1}^{2} \equiv 1(\bmod 8)$ and so
$\left(\frac{2}{A p}\right)=1$. Since $A p=x_{1}^{2}+m y^{2}$ and $A^{2} p=\left(A^{2}-1\right)(p-1)+p+A^{2}-1 \equiv$ $p-1+A^{2}(\bmod 16)$ we see that

$$
\begin{aligned}
& (-1)^{\frac{x_{1}^{2}-1}{8}+\frac{p-(-1)^{\frac{p-1}{2}}}{4}} \\
& =(-1)^{\frac{A p-m y^{2}-1}{8}+\frac{2 p-2(-1)^{\frac{p-1}{2}}}{8}}=(-1)^{\frac{-A^{2} p+A m y^{2}+A}{8}+\frac{2 p-2(-1)^{\frac{p-1}{2}}}{8}} \\
& =(-1)^{\frac{-\left(p-1+A^{2}\right)+A m y^{2}+A+2 p-2(-1)^{\frac{p-1}{2}}}{8}}=(-1)^{\frac{p+1-A^{2}+A-2(-1)^{\frac{p-1}{2}}}{8}+A m y^{2}} .
\end{aligned}
$$

Thus

$$
\begin{aligned}
& \left(\frac{2}{p}\right)^{\alpha+\beta+1}(-1)^{\frac{x_{0}-1}{4}}\left(\frac{x_{0}}{A m / 2}\right)\left(\frac{y_{0}}{A}\right) \\
& =(-1)^{\frac{x_{1}-1}{4}}\left(\frac{2}{p}\right)^{\beta+1}\left(\frac{x_{1}}{A m / 2}\right)\left(\frac{2}{A}\right)^{\beta}\left(\frac{y}{A}\right) \\
& =(-1)^{\frac{x_{1}-1}{4}}\left(\frac{2}{p}\right)\left(\frac{2}{A p}\right)^{\beta}\left(\frac{x_{1}}{m / 2}\right)\left(\frac{B y}{A}\right)\left(\frac{y}{A}\right) \\
& =(-1)^{\frac{x_{1}^{2}-1}{8}+\frac{p-(-1)^{\frac{p-1}{2}}}{4}}\left(\frac{x_{1}}{m / 2}\right)\left(\frac{B}{A}\right) \\
& =(-1)^{\frac{p+1-A^{2}+A-2(-1)^{\frac{p-1}{2}}+A m y^{2}}{8}}\left(\frac{x_{1}}{m / 2}\right)\left(\frac{B}{A}\right) .
\end{aligned}
$$

This together with Lemma 4.2 yields the result. Hence the theorem is proved.
Corollary 4.6. Let p be an odd prime and $m \in \mathbb{N}$ with $4 \nmid m$ and $p \nmid m$. Suppose $p=x^{2}+m y^{2}$ for some integers x and y.
(i) If $p \equiv 1(\bmod 4)$, then

$$
m^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{x-1}{2}}\left(\frac{x}{m}\right)(\bmod p) & \text { if } m \equiv 3(\bmod 4), \\ \left(\frac{x}{m}\right)(\bmod p) & \text { if } m \equiv 1(\bmod 8), \\ (-1)^{x-1}\left(\frac{x}{m}\right)(\bmod p) & \text { if } m \equiv 5(\bmod 8), \\ (-1)^{\frac{x^{2}-1}{8}+\frac{m-2}{4} \cdot \frac{x-1}{2}}\left(\frac{x}{m / 2}\right)(\bmod p) & \text { if } m \equiv 2(\bmod 4) .\end{cases}
$$

(ii) If $p \equiv 3(\bmod 4)$ and we choose the sign of y so that $y \equiv 1(\bmod 4)$, then

$$
m^{\frac{p-3}{4}} \equiv \begin{cases}(-1)^{\frac{m-3}{4}}\left(\frac{x}{m}\right) \frac{y}{x}(\bmod p) & \text { if } m \equiv 3(\bmod 4), \\ (-1)^{\frac{m+2}{4} \cdot \frac{x+1}{2}-1+\frac{x^{2}-1}{8}\left(\frac{x}{m / 2}\right) \frac{y}{x}(\bmod p)} & \text { if } m \equiv 2(\bmod 4)\end{cases}
$$

Proof. Let $x_{1} \in\{x,-x\}$ be such that $x_{1}=2^{\alpha} x_{0}$ and $x_{0} \equiv 1(\bmod 4)$. We first assume $p \equiv 1(\bmod 4)$. Taking $A=1, B=0$ and $C=m$ in Theorem 4.2 we have

$$
m^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{(m-1) y^{2}}{4}}\left(\frac{x_{1}}{m}\right)(\bmod p) & \text { if } 2 \nmid m \tag{4.2}\\ (-1)^{\frac{p-1+m y^{2}}{8}}\left(\frac{x_{1}}{m / 2}\right)(\bmod p) & \text { if } 2 \| m \\ 21\end{cases}
$$

If $m \equiv 3(\bmod 4)$, then $2 \nmid x, 2 \mid y$ and so $(-1)^{\frac{(m-1) y^{2}}{4}}=1$. Thus, by (4.2) we have $m^{\frac{p-1}{4}} \equiv\left(\frac{(-1)^{\frac{x-1}{2} x}}{m}\right)=(-1)^{\frac{x-1}{2}}\left(\frac{x}{m}\right)(\bmod p)$. If $m \equiv 1(\bmod 8)$, then $\left(\frac{x}{m}\right)=\left(\frac{-x}{m}\right)$. Thus, by (4.2) we have $m^{\frac{p-1}{4}} \equiv\left(\frac{x_{1}}{m}\right)=\left(\frac{x}{m}\right)(\bmod p)$. If $m \equiv 5(\bmod 8)$, then $\left(\frac{x}{m}\right)=\left(\frac{-x}{m}\right)$ and $(-1)^{y}=(-1)^{x-1}$. Thus, by (4.2) we have $m^{\frac{p-1}{4}} \equiv(-1)^{y}\left(\frac{x_{1}}{m}\right)=(-1)^{x-1}\left(\frac{x}{m}\right)(\bmod p)$. If $m \equiv 2(\bmod 4)$, we have $2 \mid y$ and $p \equiv x^{2} \equiv 1(\bmod 8)$. Thus, by (4.2) we have

$$
\begin{aligned}
m^{\frac{p-1}{4}} & \equiv(-1)^{\frac{p-1+m y^{2}}{8}}\left(\frac{x_{1}}{m / 2}\right)=(-1)^{\frac{p-1-m y^{2}}{8}}\left(\frac{(-1)^{\frac{x-1}{2}} x}{m / 2}\right) \\
& =(-1)^{\frac{x^{2}-1}{8}+\frac{m-2}{4} \cdot \frac{x-1}{2}}\left(\frac{x}{m / 2}\right)(\bmod p) .
\end{aligned}
$$

Now assume $p \equiv 3(\bmod 4)$. Then clearly $m \equiv 2,3(\bmod 4)$ and $2 \nmid y$. We may choose the sign of y so that $y \equiv 1(\bmod 4)$. Taking $A=1, B=0$ and $C=m$ in Theorem 4.2(ii) we have

$$
m^{\frac{p-3}{4}} \equiv \begin{cases}(-1)^{\frac{(m-1) y^{2}-2}{4}}\left(\frac{x_{1}}{m}\right) \frac{y}{x_{1}}(\bmod p) & \text { if } m \equiv 3(\bmod 4), \tag{4.3}\\ (-1)^{\frac{p-5+m y^{2}}{8}}\left(\frac{x_{1}}{m / 2}\right) \frac{y}{x_{1}}(\bmod p) & \text { if } m \equiv 2(\bmod 4) .\end{cases}
$$

If $m \equiv 3(\bmod 4)$, as $y^{2} \equiv 1(\bmod 8)$ and $\left(\frac{x}{m}\right) \frac{1}{x}=\left(\frac{-x}{m}\right) \frac{1}{-x}$ we have $m^{\frac{p-3}{4}} \equiv$ $(-1)^{\frac{m-3}{4}}\left(\frac{x_{1}}{m}\right) \frac{y}{x_{1}}=(-1)^{\frac{m-3}{4}}\left(\frac{x}{m}\right) \frac{y}{x}(\bmod p)$. If $m \equiv 2(\bmod 4)$, then $2 \nmid x y$ and $m y^{2}=m\left(y^{2}-1\right)+m \equiv m(\bmod 16)$. Thus, by (4.3) we have

$$
\begin{aligned}
m^{\frac{p-3}{4}} & \equiv(-1)^{\frac{p-5+m y^{2}}{8}}\left(\frac{x_{1}}{m / 2}\right) \frac{y}{x_{1}}=(-1)^{\frac{x^{2}-5+2 m y^{2}}{8}}\left(\frac{x_{1}}{m / 2}\right) \frac{y}{x_{1}} \\
& =(-1)^{\frac{m-2}{4}+\frac{x^{2}-1}{8}}\left(\frac{(-1)^{\frac{x-1}{2}} x}{m / 2}\right) \frac{y}{(-1)^{\frac{x-1}{2} x}} \\
& =(-1)^{\frac{m-2}{4}+\frac{x^{2}-1}{8}+\frac{x-1}{2}+\frac{x-1}{2} \cdot \frac{m-2}{4}}\left(\frac{x}{m / 2}\right) \frac{y}{x} \\
& =(-1)^{\frac{x+1}{2} \cdot \frac{m+2}{4}-1+\frac{x^{2}-1}{8}}\left(\frac{x}{m / 2}\right) \frac{y}{x}(\bmod p) .
\end{aligned}
$$

This completes the proof.

As examples, if p is an odd prime, we then have

$$
\begin{aligned}
2^{\frac{p-1}{4}} \equiv(-1)^{\frac{x^{2}-1}{8}}(\bmod p) \quad \text { for } p=x^{2}+2 y^{2} \equiv 1(\bmod 8) \\
2^{\frac{p-3}{4}} \equiv(-1)^{\frac{x-1}{2}+\frac{x^{2}-1}{8}} \frac{y}{x}(\bmod p) \quad \text { for } \quad p=x^{2}+2 y^{2} \equiv 3(\bmod 8) \\
\text { with } \quad y \equiv 1(\bmod 4) \\
3^{\frac{p-1}{4}} \equiv(-1)^{\frac{x-1}{2}}\left(\frac{x}{3}\right)(\bmod p) \quad \text { for } \quad p=x^{2}+3 y^{2} \equiv 1(\bmod 12), \\
3^{\frac{p-3}{4}} \equiv\left(\frac{x}{3}\right) \frac{y}{x}(\bmod p) \quad \text { for } p=x^{2}+3 y^{2} \equiv 7(\bmod 12) \\
\text { with } y \equiv 1(\bmod 4) \\
5^{\frac{p-1}{4}} \equiv(-1)^{x-1}\left(\frac{x}{5}\right)(\bmod p) \quad \text { for } \quad p=x^{2}+5 y^{2} \equiv 1,9(\bmod 20)
\end{aligned}
$$

and
$6^{\frac{p-1}{4}} \equiv(-1)^{\frac{x-1}{2}+\frac{x^{2}-1}{8}}\left(\frac{x}{3}\right)(\bmod p) \quad$ for $\quad p=x^{2}+6 y^{2} \equiv 1(\bmod 24)$,
$6^{\frac{p-3}{4}} \equiv(-1)^{\frac{x^{2}-1}{8}-1}\left(\frac{x}{3}\right) \frac{y}{x}(\bmod p) \quad$ for $\quad p=x^{2}+6 y^{2} \equiv 7(\bmod 24)$
with $y \equiv 1(\bmod 4)$,
$7^{\frac{p-1}{4}} \equiv(-1)^{\frac{x-1}{2}}\left(\frac{x}{7}\right)(\bmod p) \quad$ for $\quad p=x^{2}+7 y^{2} \equiv 1,9,25(\bmod 28)$,
$7^{\frac{p-3}{4}} \equiv-\left(\frac{x}{7}\right) \frac{y}{x}(\bmod p) \quad$ for $\quad p=x^{2}+7 y^{2} \equiv 11,15,23(\bmod 28)$
with $y \equiv 1(\bmod 4)$,
$10^{\frac{p-1}{4}} \equiv(-1)^{\frac{x^{2}-1}{8}}\left(\frac{x}{5}\right)(\bmod p) \quad$ for $\quad p=x^{2}+10 y^{2} \equiv 1,9(\bmod 40)$,
$10^{\frac{p-3}{4}} \equiv(-1)^{\frac{x-1}{2}+\frac{x^{2}-1}{8}}\left(\frac{x}{5}\right) \frac{y}{x}(\bmod p) \quad$ for $\quad p=x^{2}+10 y^{2} \equiv 11,19(\bmod 40)$ with $y \equiv 1(\bmod 4)$.

Remark 4.3 Let p be an odd prime. When $p=x^{2}+3 y^{2} \equiv 1(\bmod 12)$, the congruence $3^{\frac{p-1}{4}} \equiv(-1)^{\frac{x-1}{2}}\left(\frac{x}{3}\right)(\bmod p)$ was proved by Hudson and Williams [HW] using cyclotomic numbers of order 6 . When $m \in\{2,3,6\}$ and $p=x^{2}+m y^{2} \equiv 3(\bmod 4)$, the above congruences for $m^{\frac{p-3}{4}}(\bmod p)$ have been given in [Lem2, p. 180].

If p and m are distinct primes such that $p \equiv m \equiv 1(\bmod 4)$ and $p=$ $x^{2}+m y^{2}(x, y \in \mathbb{Z})$. Then $\left(\frac{m}{p}\right)=\left(\frac{p}{m}\right)=\left(\frac{x^{2}}{m}\right)=1$ and $\left[\frac{p}{m}\right]_{4}=\left(\frac{x}{m}\right)$. Thus, by Corollary 4.6(i) we have

$$
\left[\frac{m}{p}\right]_{4}\left[\frac{p}{m}\right]_{4}= \begin{cases}1 & \text { if } m \equiv 1(\bmod 8) \\ (-1)^{x-1}=(-1)^{y} & \text { if } m \equiv 5(\bmod 8)\end{cases}
$$

This is a classical result due to Brown [Bro1] and Lehmer [Le3].

Theorem 4.3. Let p be an odd prime, $m \in \mathbb{Z}, 2 \nmid m$ and $p \nmid m$.
(i) If $p \equiv 1(\bmod 4)$ and $2 p=x^{2}+m y^{2}$ for $x, y \in \mathbb{Z}$, then $m^{\frac{p-1}{4}} \equiv$ $(-1)^{\frac{m-1}{8}}\left(\frac{x}{m}\right)(\bmod p)$.
(ii) If $p \equiv 3(\bmod 4)$ and $2 p=x^{2}+m y^{2}$ with $x, y \in \mathbb{Z}$ and $4 \mid x-y$, then $m^{\frac{p-3}{4}} \equiv(-1)^{\frac{m-5}{8}}\left(\frac{x}{m}\right) \frac{y}{x} \quad(\bmod p)$.
(iii) If $p \equiv 1(\bmod 4)$ and $4 p=x^{2}+m y^{2}$ for $x, y \in \mathbb{Z}$, then $(-m)^{\frac{p-1}{4}} \equiv$ $(-1)^{\frac{x-1}{2}}\left(\frac{x}{m}\right)(\bmod p)$.
(iv) If $p \equiv 3(\bmod 4)$ and $4 p=x^{2}+m y^{2}$ with $x, y \in \mathbb{Z}$ and $4 \mid x-y$, then $(-m)^{\frac{p-3}{4}} \equiv(-1)^{\frac{x-1}{2}}\left(\frac{x}{m}\right) \frac{y}{x}(\bmod p)$.

Proof. As $2 \nmid x y$ we may assume $x \equiv y \equiv 1(\bmod 4)$. We first assume $2 p=x^{2}+m y^{2}$. Then $2 p \equiv 1+m(\bmod 8)$ and so $p \equiv 1 \operatorname{or} 3(\bmod 4)$ according as $m \equiv 1$ or $5(\bmod 8)$. If $p \equiv 1(\bmod 4)$, taking $A=2$ in Lemma 4.2(i) we see that $m^{\frac{p-1}{4}} \equiv(-1)^{\frac{p-1}{4}+\frac{x y-1}{4}}\left(\frac{x}{m}\right)(\bmod p)$. Clearly

$$
\begin{aligned}
(-1)^{\frac{p-1}{4}+\frac{x y-1}{4}} & =(-1)^{\frac{x^{2}+m y^{2}-2}{8}+\frac{x y-1}{4}}=(-1)^{\frac{(x-y)^{2}+2 x y+(m-1) y^{2}-2}{8}+\frac{x y-1}{4}} \\
& =(-1)^{\frac{x y+\frac{m-1}{2} y^{2}-1}{4}+\frac{x y-1}{4}}=(-1)^{\frac{m-1}{8} y^{2}}=(-1)^{\frac{m-1}{8}} .
\end{aligned}
$$

Thus (i) is true. If $p \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
(-1)^{\frac{p+1}{4}+\frac{x y-1}{4}} & =(-1)^{\frac{x^{2}+m y^{2}+2}{8}+\frac{x y-1}{4}}=(-1)^{\frac{(x-y)^{2}+2 x y+(m-1) y^{2}+2}{8}+\frac{x y-1}{4}} \\
& =(-1)^{\frac{x y+\frac{m-1}{2} y^{2}+1}{4}+\frac{x y-1}{4}}=(-1)^{\frac{m-1}{2} y^{2}+2}
\end{aligned}=(-1)^{\frac{m+3}{8}} .
$$

Thus applying Lemma 4.2(ii) we obtain

$$
m^{\frac{p-3}{4}} \equiv-(-1)^{\frac{p+1}{4}+\frac{x y-1}{4}}\left(\frac{x}{m}\right) \frac{y}{x}=(-1)^{\frac{m-5}{8}}\left(\frac{x}{m}\right) \frac{y}{x}(\bmod p) .
$$

This proves (ii).
Now assume $4 p=x^{2}+m y^{2}$. Then $1+m \equiv x^{2}+m y^{2}=4 p \equiv 4(\bmod 8)$ and hence $m \equiv 3(\bmod 8)$. Taking $A=4$ in Lemma 4.2 we deduce (iii) and (iv). So the theorem is proved.

Corollary 4.7. Let p be a prime such that $p \equiv 3,7(\bmod 20)$ and hence $2 p=x^{2}+5 y^{2}$ for some integers x and y. Suppose $4 \mid x-y$. Then

$$
\begin{aligned}
& 5^{\frac{p-3}{4}} \equiv \begin{cases}\frac{y}{x}(\bmod p) & \text { if } p \equiv 3(\bmod 20), \\
-\frac{y}{x}(\bmod p) & \text { if } p \equiv 7(\bmod 20),\end{cases} \\
& L_{\frac{p-1}{2}} \equiv \frac{x}{y}(\bmod p) \quad \text { and } \quad F_{\frac{p-1}{2}} \equiv-\frac{1}{2} F_{\frac{p+1}{2}} \equiv \frac{y}{x}(\bmod p) .
\end{aligned}
$$

Proof. As $x^{2} \equiv 2 p(\bmod 5)$ we see that $\left(\frac{x}{5}\right)=1$ or -1 according as $p \equiv 3(\bmod 20)$ or $p \equiv 7(\bmod 20)$. Thus taking $m=5$ in Theorem 4.3(ii)
we deduce the result for $5^{\frac{p-3}{4}}(\bmod p)$. By the above and [SS, Corollaries 1 and 2] we have

$$
L_{\frac{p-1}{2}} \equiv \begin{cases}-5^{\frac{p+1}{4}} \equiv-5 \frac{y}{x} \equiv \frac{x}{y}(\bmod p) & \text { if } p \equiv 3(\bmod 20), \\ 5^{\frac{p+1}{4}} \equiv-5 \frac{y}{x} \equiv \frac{x}{y}(\bmod p) & \text { if } p \equiv 7(\bmod 20)\end{cases}
$$

and

$$
F_{\frac{p-1}{2}} \equiv-\frac{1}{2} F_{\frac{p+1}{2}} \equiv \begin{cases}5^{\frac{p-3}{4}} \equiv \frac{y}{x}(\bmod p) & \text { if } p \equiv 3(\bmod 20) \\ -5^{\frac{p-3}{4}} \equiv \frac{y}{x}(\bmod p) & \text { if } p \equiv 7(\bmod 20)\end{cases}
$$

This completes the proof.
Lemma 4.3. Let $a, b \in \mathbb{Z}$ with $2 \nmid a$ and $2 \mid b$. For any integer x with $\left(x, a^{2}+b^{2}\right)=1$ we have

$$
\left(\frac{x^{2}}{a+b i}\right)_{4}=\left(\frac{x}{a^{2}+b^{2}}\right)
$$

Proof. Suppose $x=2^{\alpha} x_{0}\left(2 \nmid x_{0}\right)$. Using Lemma 4.1 and [Su6, (2.7) and (2.8)] we see that

$$
\begin{aligned}
\left(\frac{x^{2}}{a+b i}\right)_{4} & =\left(\frac{2}{a+b i}\right)_{4}^{2 \alpha}\left(\frac{x_{0}^{2}}{a+b i}\right)_{4}=(-1)^{\frac{b}{2} \alpha}\left(\frac{a+b i}{x_{0}^{2}}\right)_{4} \\
& =(-1)^{\frac{b}{2} \alpha}\left(\frac{a+b i}{\left|x_{0}\right|}\right)_{4}^{2}=\left(\frac{2}{a^{2}+b^{2}}\right)^{\alpha}\left(\frac{a^{2}+b^{2}}{\left|x_{0}\right|}\right) \\
& =\left(\frac{2^{\alpha}}{a^{2}+b^{2}}\right)\left(\frac{x_{0}}{a^{2}+b^{2}}\right)=\left(\frac{x}{a^{2}+b^{2}}\right) .
\end{aligned}
$$

This proves the lemma.
Remark 4.4 Let $a, b, c, d \in \mathbb{Z}$ with $2 \nmid c, 2 \mid d,(c, d)=1$ and $\left(a^{2}+b^{2}, c^{2}+\right.$ $\left.d^{2}\right)=1$. Using Lemma 4.3 we have

$$
\begin{aligned}
\left(\frac{a+b i}{c+d i}\right)_{4}^{2} & =\left(\frac{(a c+b c i)^{2} c^{2}}{c+d i}\right)_{4}=\left(\frac{(a c+b d)^{2} c^{2}}{c+d i}\right)_{4}=\left(\frac{(a c+b d) c}{c^{2}+d^{2}}\right) \\
& =\left(\frac{a c+b d}{c^{2}+d^{2}}\right)\left(\frac{c^{2}+d^{2}}{c}\right)=\left(\frac{a c+b d}{c^{2}+d^{2}}\right) .
\end{aligned}
$$

Theorem 4.4. Let p be an odd prime and $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$ and $4 \nmid a^{2}+b^{2}$. Suppose $p=A x^{2}+2 B x y+C y^{2}$ with $A, B, C, x, y \in \mathbb{Z}, p \nmid A$, $\left(A, 2\left(a^{2}+b^{2}\right)\right)=1$ and $(2 B)^{2}-4 A C=-4\left(a^{2}+b^{2}\right)$. Assume $y / 2^{\operatorname{ord}_{2} y} \equiv$ $(A x+B y) / 2^{\operatorname{ord}_{2}(A x+B y)} \equiv 1(\bmod 4)$.
(i) If $p \equiv 1(\bmod 4)$, then

$$
\begin{aligned}
& \left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right) \\
& = \begin{cases}(-1)^{\frac{a}{2} y+\frac{A-1}{4}}\left(\frac{B}{A}\right)\left(\frac{b-a i}{A}\right)_{4} & \text { if } 2 \mid a \text { and } 2 \nmid b, \\
(-1)^{\frac{p-A}{4}+\frac{b}{2} y}\left(\frac{B}{A}\right)\left(\frac{a+b i}{A}\right)_{4} & \text { if } 2 \nmid a \text { and } 2 \mid b, \\
(-1)^{\frac{y}{2}} i \frac{A-1}{4}\left(\frac{B}{A}\right)\left(\frac{a+b-\frac{a-b}{2} i}{A}\right)_{4} & \text { if } 2 \nmid a b, 4 \mid a-b \text { and } 2 \mid y, \\
i^{\frac{3-A}{4}}\left(\frac{B}{A}\right)\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4} & \text { if } 2 \nmid a b, 4 \mid a-b \text { and } 2 \nmid y .\end{cases}
\end{aligned}
$$

(ii) If $p \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
& \left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left\{\begin{array}{c}
(-1)^{\frac{a}{2} y+\frac{A-3}{4}}\left(\frac{B}{A}\right)\left(\frac{b-a i}{A}\right)_{4} i \frac{y}{A x+B y} \cdot \frac{a^{2}+b^{2}-b \sqrt{a^{2}+b^{2}}}{a}(\bmod p) \\
(-1)^{\frac{p-A}{4}+1+\frac{b}{2} y}\left(\frac{B}{A}\right)\left(\frac{a+b i}{A}\right)_{4} i \frac{y}{A x+B y} \cdot \frac{a^{2}+b^{2}-b \sqrt{a^{2}+b^{2}}}{a}(\bmod p) \\
\text { if } 2 \nmid a \text { and } 2 \mid b, \\
(-1)^{\frac{y}{2}+1} i^{\frac{3-A}{4}}\left(\frac{B}{A}\right)\left(\frac{a+b}{2}-\frac{a-b}{2} i\right.
\end{array}\right)_{4} \frac{y}{A x+B y} \cdot \frac{a^{2}+b^{2}-b \sqrt{a^{2}+b^{2}}}{a}(\bmod p) \\
& \text { if } 2 \nmid a b, 4 \mid a-b \text { and } 2 \mid y, \\
& i^{\frac{A-1}{4}\left(\frac{B}{A}\right)\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4} \frac{y}{A x+B y} \cdot \frac{a^{2}+b^{2}-b \sqrt{a^{2}+b^{2}}}{a}(\bmod p)} \begin{array}{l}
i f 2 \nmid a b, 4 \mid a-b \text { and } 2 \nmid y .
\end{array}
\end{aligned}
$$

Proof. As $A p=(A x+B y)^{2}+\left(a^{2}+b^{2}\right) y^{2}$ we see that $\left(\frac{-\left(a^{2}+b^{2}\right)}{p}\right)=1$ and so $\left(\frac{b+a i}{p}\right)_{4}^{2}=\left(\frac{a^{2}+b^{2}}{p}\right)=(-1)^{\frac{p-1}{2}}$ by Lemma 4.1. Hence, if $p \equiv 1(\bmod 4)$, then $\left(\frac{b+a i}{p}\right)_{4}= \pm 1$; if $p \equiv 3(\bmod 4)$, then $\left(\frac{b+a i}{p}\right)_{4}= \pm i$. Thus applying Theorem 4.1 we have

$$
\begin{align*}
& \left(\frac{b+\sqrt{a^{2}+b^{2}}}{2}\right)^{\frac{p-1}{2}} \tag{4.4}\\
& \equiv \begin{cases}\left(a^{2}+b^{2}\right)^{\frac{p-1}{4}}\left(\frac{b+a i}{p}\right)_{4}(\bmod p) & \text { if } p \equiv 1(\bmod 4) \\
-\sqrt{a^{2}+b^{2}}\left(a^{2}+b^{2}\right)^{\frac{p-3}{4}} \frac{b-\sqrt{a^{2}+b^{2}}}{a}\left(\frac{b+a i}{p}\right)_{4} i(\bmod p) & \text { if } p \equiv 3(\bmod 4)\end{cases}
\end{align*}
$$

Now we consider the following three cases.
Case 1. $2 \mid a$ and $2 \nmid b$. In this case, $A p=(A x+B y)^{2}+\left(a^{2}+b^{2}\right) y^{2} \equiv$ $(A x+B y)^{2}+y^{2} \equiv 1(\bmod 4)$ and

$$
a^{2}+b^{2} \equiv a^{2}+1 \equiv \begin{cases}1(\bmod 8) & \text { if } 4 \mid a \\ 5(\bmod 8) & \text { if } 2 \| a\end{cases}
$$

Thus, if $p \equiv 1(\bmod 4)$, by Theorem $4.2(\mathrm{i})$ we have

$$
\left(a^{2}+b^{2}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{a}{2} y+\frac{A-1}{4}}\left(\frac{A x+B y}{a^{2}+b^{2}}\right)\left(\frac{B}{A}\right)(\bmod p)
$$

if $p \equiv 3(\bmod 4)$, by Theorem $4.2(i i)$ we have

$$
\left(a^{2}+b^{2}\right)^{\frac{p-3}{4}} \equiv(-1)^{\frac{a}{2} y+\frac{A-3}{4}}\left(\frac{A x+B y}{a^{2}+b^{2}}\right)\left(\frac{B}{A}\right) \frac{y}{A x+B y}(\bmod p)
$$

On the other hand, using Lemma 4.3 we have

$$
\begin{aligned}
\left(\frac{b+a i}{p}\right)_{4} & =\left(\frac{b+a i}{A}\right)_{4}^{-1}\left(\frac{b+a i}{A p}\right)_{4}=\left(\frac{b-a i}{A}\right)_{4}\left(\frac{A p}{b+a i}\right)_{4} \\
& =\left(\frac{b-a i}{A}\right)_{4}\left(\frac{(A x+B y)^{2}+\left(a^{2}+b^{2}\right) y^{2}}{b+a i}\right)_{4} \\
& =\left(\frac{b-a i}{A}\right)_{4}\left(\frac{(A x+B y)^{2}}{b+a i}\right)_{4}=\left(\frac{b-a i}{A}\right)_{4}\left(\frac{A x+B y}{a^{2}+b^{2}}\right)
\end{aligned}
$$

Hence, if $p \equiv 1(\bmod 4)$, then

$$
\left(a^{2}+b^{2}\right)^{\frac{p-1}{4}}\left(\frac{b+a i}{p}\right)_{4} \equiv(-1)^{\frac{a}{2} y+\frac{A-1}{4}}\left(\frac{B}{A}\right)\left(\frac{b-a i}{A}\right)_{4}(\bmod p) ;
$$

if $p \equiv 3(\bmod 4)$, then

$$
\begin{aligned}
& \left(a^{2}+b^{2}\right)^{\frac{p-3}{4}}\left(\frac{b+a i}{p}\right)_{4} \\
& \equiv(-1)^{\frac{a}{2} y+\frac{A-3}{4}}\left(\frac{B}{A}\right)\left(\frac{b-a i}{A}\right)_{4} \frac{y}{A x+B y}(\bmod p)
\end{aligned}
$$

This together with (4.4) yields the result in the case.
Case 2. $2 \nmid a$ and $2 \mid b$. In this case, $A p=(A x+B y)^{2}+\left(a^{2}+b^{2}\right) y^{2} \equiv$ $(A x+B y)^{2}+y^{2} \equiv 1(\bmod 4)$ and

$$
a^{2}+b^{2} \equiv 1+b^{2} \equiv \begin{cases}1(\bmod 8) & \text { if } 4 \mid b \\ 5(\bmod 8) & \text { if } 2 \| b\end{cases}
$$

Thus, if $p \equiv 1(\bmod 4)$, by Theorem $4.2(\mathrm{i})$ we have

$$
\left(a^{2}+b^{2}\right)^{\frac{p-1}{4}} \equiv(-1)^{\frac{b}{2} y+\frac{A-1}{4}}\left(\frac{A x+B y}{a^{2}+b^{2}}\right)\left(\frac{B}{A}\right)(\bmod p) ;
$$

if $p \equiv 3(\bmod 4)$, by Theorem $4.2(\mathrm{ii})$ we have

$$
\begin{gathered}
\left(a^{2}+b^{2}\right)^{\frac{p-3}{4}} \equiv(-1)^{\frac{b}{2} y+\frac{A-3}{4}}\left(\frac{A x+B y}{a^{2}+b^{2}}\right)\left(\frac{B}{A}\right) \frac{y}{A x+B y}(\bmod p)
\end{gathered}
$$

On the other hand,

$$
\begin{aligned}
\left(\frac{b+a i}{p}\right)_{4} & =\left(\frac{i}{p}\right)_{4}\left(\frac{a-b i}{p}\right)_{4}=i^{\frac{p^{2}-1}{4}}\left(\frac{a-b i}{A}\right)_{4}^{-1}\left(\frac{a-b i}{A p}\right)_{4} \\
& =(-1)^{\frac{p^{2}-1}{8}}\left(\frac{a+b i}{A}\right)_{4}\left(\frac{A p}{a-b i}\right)_{4} \\
& =(-1)^{\frac{p^{2}-1}{8}}\left(\frac{a+b i}{A}\right)_{4}\left(\frac{(A x+B y)^{2}}{a-b i}\right)_{4} \\
& =(-1)^{\frac{p-(-1)^{(p-1) / 2}}{4}}\left(\frac{a+b i}{A}\right)_{4}\left(\frac{A x+B y}{a^{2}+b^{2}}\right) .
\end{aligned}
$$

Now combining the above with (4.4) gives the result in this case.
Case 3. $2 \nmid a b$. In this case, $a^{2}+b^{2} \equiv 2(\bmod 8)$. We may choose the sign of a so that $4 \mid a-b$. It is clear that $a b=a-b+b^{2}+(a-b)(b-1) \equiv a-b+$ $1(\bmod 8)$ and thus $A\left(a^{2}+b^{2}\right) \equiv 2 a b A \equiv 2 A(a-b+1) \equiv 2(a-b)+2 A(\bmod 16)$. We also have $A p=(A x+B y)^{2}+\left(a^{2}+b^{2}\right) y^{2} \equiv 1+2 y^{2} \equiv 2-(-1)^{y}(\bmod 8)$ and so $p \equiv A^{2} p \equiv\left(2-(-1)^{y}\right) A(\bmod 8)$. Hence $A \equiv(-1)^{\frac{p-1}{2}+y}(\bmod 4)$ and so $A^{2} \equiv 2(-1)^{\frac{p-1}{2}+y} A-1(\bmod 16)$. We also have

$$
A\left(a^{2}+b^{2}\right) y^{2} \equiv \begin{cases}2 A y^{2} \equiv 4 y(\bmod 16) & \text { if } 2 \mid y \\ A\left(a^{2}+b^{2}\right) \equiv 2(a-b)+2 A(\bmod 16) & \text { if } 2 \nmid y\end{cases}
$$

Thus

$$
\begin{aligned}
& A-A^{2}+A\left(a^{2}+b^{2}\right) y^{2} \\
& \equiv \begin{cases}\left(1-2(-1)^{(p-1) / 2}\right) A+1+4 y(\bmod 16) & \text { if } 2 \mid y, \\
\left(3+2(-1)^{(p-1) / 2}\right) A+1+2(a-b)(\bmod 16) & \text { if } 2 \nmid y .\end{cases}
\end{aligned}
$$

If $p \equiv 1(\bmod 4)$, by the above and Theorem $4.2(\mathrm{i})$ we have

$$
\left(a^{2}+b^{2}\right)^{\frac{p-1}{4}} \equiv \begin{cases}(-1)^{\frac{p-A}{8}+\frac{y}{2}}\left(\frac{B}{A}\right)\left(\frac{A x+B y}{\left(a^{2}+b^{2}\right) / 2}\right)(\bmod p) & \text { if } 2 \mid y, \\ (-1)^{\frac{p+5 A}{8}+\frac{a-b}{4}}\left(\frac{B}{A}\right)\left(\frac{A x+B y}{\left(a^{2}+b^{2}\right) / 2}\right)(\bmod p) & \text { if } 2 \nmid y\end{cases}
$$

If $p \equiv 3(\bmod 4)$, by the above and Theorem $4.2(\mathrm{ii})$ we have

$$
\left(a^{2}+b^{2}\right)^{\frac{p-3}{4}} \equiv \begin{cases}(-1)^{\frac{p-A}{8}-1+\frac{y}{2}}\left(\frac{B}{A}\right)\left(\frac{A x+B y}{\left(a^{2}+b^{2}\right) / 2}\right) \frac{y}{A x+B y}(\bmod p) & \text { if } 2 \mid y, \\ (-1)^{\frac{p+A-4}{8}+\frac{a-b}{4}}\left(\frac{B}{A}\right)\left(\frac{A x+B y}{\left(a^{2}+b^{2}\right) / 2}\right) \frac{y}{A x+B y}(\bmod p) & \text { if } 2 \nmid y .\end{cases}
$$

On the other hand, using $[$ Su6, (2.8)], Lemma 4.3 and the fact $p \equiv(2-$
$\left.(-1)^{y}\right) A(\bmod 8)$ we see that

$$
\begin{aligned}
& \left(\frac{b+a i}{p}\right)_{4} \\
& =\left(\frac{1+i}{p}\right)_{4}\left(\frac{\frac{a+b}{2}+\frac{a-b}{2} i}{A p}\right)_{4}\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4} \\
& =i^{\frac{(-1)^{\frac{p-1}{2}}{ }_{p-1}}{4}}(-1)^{\frac{A p-1}{2} \cdot \frac{a-b}{4}}\left(\frac{(A x+B y)^{2}+\left(a^{2}+b^{2}\right) y^{2}}{\frac{a+b}{2}+\frac{a-b}{2} i}\right)_{4}\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4} \\
& =(-1)^{\frac{A p-1}{2} \cdot \frac{a-b}{4}} i^{\frac{(-1)^{(p-1) / 2_{p-1}}}{4}}\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4}\left(\frac{(A x+B y)^{2}}{\frac{a+b}{2}+\frac{a-b}{2} i}\right)_{4} \\
& =(-1)^{\frac{a-b}{4} y} i^{\frac{(-1)^{(p-1) / 2_{\left(p-\left(2-(-1)^{y}\right) A\right)}^{4}}}{4}} \cdot i^{\frac{(-1)^{(p-1) / 2_{\left.2-(-1)^{y}\right) A-1}^{4}}}{4}} \\
& \times\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4}\left(\frac{A x+B y}{\left(a^{2}+b^{2}\right) / 2}\right) \\
& =(-1)^{\frac{a-b}{4} y+\frac{p-\left(2-(-1)^{y}\right) A}{8}} \cdot i^{\frac{(-1)^{\frac{p-1}{2}} A\left(2-(-1)^{y}\right)-1}{4}} \\
& \times\left(\frac{\frac{a+b}{2}-\frac{a-b}{2} i}{A}\right)_{4}\left(\frac{A x+B y}{\left(a^{2}+b^{2}\right) / 2}\right)
\end{aligned}
$$

Now combining the above with (4.4) we deduce the result.
By the above the theorem is proved.
Remark 4.5 Let p be an odd prime and $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$. Then clearly

$$
\left(\frac{b+\sqrt{a^{2}+b^{2}}}{a}\right)^{\frac{p-\left(\frac{-1}{p}\right)}{2}}=\left(\frac{\sqrt{a^{2}+b^{2}}+b}{\sqrt{a^{2}+b^{2}}-b}\right)^{\frac{p-\left(\frac{-1}{p}\right)}{4}} .
$$

Set

$$
f= \begin{cases}\frac{4}{\left(2,1+\text { ord }_{2} a\right)} & \text { if } 2 \nmid b, \\ 2 & \text { if } 2 \nmid a \text { and } 2 \| b, \\ \frac{2}{\left(2, \text { ord }_{2} a\right)} & \text { if } 2 \mid a \text { and } 2 \| b, \\ \frac{2}{(2, a)} & \text { if } 4 \mid b\end{cases}
$$

and $F=\frac{a^{\prime}}{\left(a^{\prime}, b\right)} f$, where a^{\prime} is the product of distinct odd prime divisors of a. From the above and [Su6, Theorem 4.1] we deduce the congruences for $\left(\frac{b+\sqrt{a^{2}+b^{2}}}{a}\right)^{\left(p-\left(\frac{-1}{p}\right)\right) / 2}(\bmod p)$ by expressing p in terms of binary quadratic forms of discriminant $-4 F^{2}\left(a^{2}+b^{2}\right)$. As $4\left(a^{2}+b^{2}\right) \leq 4 F^{2}\left(a^{2}+b^{2}\right)$, Theorem 4.3 is stronger than the above result deduced from [Su6, Theorem 4.1].

If $(A x+B y) / 2^{\operatorname{ord}_{2}(A x+B y)} \equiv 3(\bmod 4)$, then

$$
(A(-x)+(-B) y) / 2^{\operatorname{ord}_{2}(A(-x)+(-B) y)} \equiv 1(\bmod 4) .
$$

We also have $\left(\frac{B}{A}\right)=\left(\frac{-B}{A}\right)$ for $A \equiv 1(\bmod 4)$. Thus from Theorem 4.4 we deduce the following result.
Corollary 4.8. Let $p \equiv 1(\bmod 4)$ be a prime and $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$ and $a^{2}+b^{2} \equiv 1(\bmod 8)$. Suppose $p=A x^{2}+2 B x y+C y^{2}$ with $A, B, C, x, y \in$ $\mathbb{Z}, p \nmid A,\left(A, 2\left(a^{2}+b^{2}\right)\right)=1$ and $(2 B)^{2}-4 A C=-4\left(a^{2}+b^{2}\right)$.
(i) If $4 \mid a$ and $2 \nmid b$, then

$$
\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)=(-1)^{\frac{A-1}{4}}\left(\frac{B}{A}\right)\left(\frac{b-a i}{A}\right)_{4} .
$$

(ii) If $2 \nmid a$ and $4 \mid b$, then

$$
\left(\frac{b+\sqrt{a^{2}+b^{2}}}{p}\right)=(-1)^{\frac{A-1}{4}}\left(\frac{B}{A}\right)\left(\frac{a+b i}{A}\right)_{4} .
$$

Suppose that p is a prime such that $p \equiv 1(\bmod 4)$ and $p \equiv \pm 1, \pm 2, \pm 4, \pm 8$ $(\bmod 17)$. Then p is represented by $x^{2}+17 y^{2}$ or $9 x^{2}+2 x y+2 y^{2}$. Taking $a=1$ and $b=4$ in Corollary 4.8(ii) we see that

$$
\left(\frac{\varepsilon_{17}}{p}\right)=\left(\frac{4+\sqrt{17}}{p}\right)= \begin{cases}1 & \text { if } p=x^{2}+17 y^{2} \\ \left(\frac{1+4 i}{9}\right)_{4}=\left(\frac{1+4 i}{3}\right)_{4}^{2}=-1 & \text { if } p=9 x^{2}+2 x y+2 y^{2}\end{cases}
$$

This together with Corollary 2.3 yields

$$
\begin{equation*}
p=x^{2}+17 y^{2} \Longleftrightarrow\left(\frac{4+\sqrt{17}}{p}\right)=1 \Longleftrightarrow\left(\frac{c-4 d}{17}\right)=1 \tag{4.5}
\end{equation*}
$$

where c and d are given by $p=c^{2}+d^{2}(c, d \in \mathbb{Z})$ and $2 \mid d$.
Corollary 4.9. Let p be an odd prime and $a, b \in \mathbb{Z}$ with $p \nmid a\left(a^{2}+b^{2}\right)$.
Suppose $p=x^{2}+\left(a^{2}+b^{2}\right) y^{2}$ for some integers x and y.
(i) If $2 \mid a$ and $2 \nmid b$, then $\left(\frac{\left(b+\sqrt{a^{2}+b^{2}}\right) / 2}{p}\right)=(-1)^{\frac{a}{2} y}$.
(ii) If $2 \nmid a$ and $2 \mid b$, then $\left(\frac{b+\sqrt{a^{2}+b^{2}}}{p}\right)=(-1)^{\frac{b}{2} y}$.
(iii) If $2 \nmid a b$ and $4 \mid a-b$, then $p \equiv 2-(-1)^{y}(\bmod 8)$ and

$$
\begin{aligned}
& \left(b+\sqrt{a^{2}+b^{2}}\right)^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{y}{2}}(\bmod p) & \text { if } 8 \mid p-1, \\
-\frac{y}{x} \cdot \frac{a^{2}+b^{2}-b \sqrt{a^{2}+b^{2}}}{a}(\bmod p) & \text { if } 8 \mid p-3 \text { and } 4 \mid x-y . \\
30\end{cases}
\end{aligned}
$$

Proof. If $a+b \equiv 1(\bmod 2)$, then clearly $p=x^{2}+\left(a^{2}+b^{2}\right) y^{2} \equiv x^{2}+$ $y^{2} \equiv 1(\bmod 4)$. When $2 \nmid a b$, we have $a^{2}+b^{2} \equiv 2(\bmod 8), 2 \nmid x$ and $p=x^{2}+\left(a^{2}+b^{2}\right) y^{2} \equiv 1+2 y^{2} \equiv 2-(-1)^{y}(\bmod 8)$. Thus, if $2 \nmid a b$ and $p \equiv 3(\bmod 4)$, then $2 \nmid x y, p \equiv 3(\bmod 8)$ and hence $2^{\frac{p-1}{2}} \equiv-1(\bmod p)$. Now taking $A=1, B=0$ and $C=a^{2}+b^{2}$ in Theorem 4.4 and applying the above we deduce the result.

Let p be an odd prime. From Corollary 4.9 we deduce

$$
\begin{align*}
& \left(\frac{(1+\sqrt{5}) / 2}{p}\right)=(-1)^{y} \quad \text { for } \quad p=x^{2}+5 y^{2}(x, y \in \mathbb{Z}), \tag{4.6}\\
& \left(\frac{(3+\sqrt{13}) / 2}{p}\right)=(-1)^{y} \quad \text { for } \quad p=x^{2}+13 y^{2}(x, y \in \mathbb{Z}), \tag{4.7}\\
& \left(\frac{6+\sqrt{37}}{p}\right)=(-1)^{y} \quad \text { for } \quad p=x^{2}+37 y^{2}(x, y \in \mathbb{Z}) . \tag{4.8}
\end{align*}
$$

Here (4.6) is due to Vandiver [V], (4.7) and (4.8) are due to Brandler [B]. See also [Su6, Remark 6.1].

When $p \equiv 3(\bmod 8)$ is a prime and $p=x^{2}+2 y^{2}$ with $x \equiv y(\bmod 4)$, by Corollary 4.9(iii) we have $(1+\sqrt{2})^{\frac{p-1}{2}} \equiv-\frac{y}{x}(2-\sqrt{2})(\bmod p)$. This result has been given in [Lem2, p. 180].

Corollary 4.10. Let $p \equiv 1,9,11,19(\bmod 40)$ be a prime and hence $p=$ $x^{2}+10 y^{2}$ for some integers x and y. Then

$$
\begin{aligned}
& (3+\sqrt{10})^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{y}{2}}(\bmod p) & \text { if } p \equiv 1,9(\bmod 40), \\
\frac{y}{x}(10-3 \sqrt{10})(\bmod p) & \text { if } p \equiv 11,19(\bmod 40) \text { and } 4 \mid x-y .\end{cases}
\end{aligned}
$$

Proof. Taking $a=-1$ and $b=3$ in Corollary 4.9(iii) we obtain the result.
Corollary 4.11. Let p be an odd prime such that $p \equiv 1,3(\bmod 8)$ and $\left(\frac{p}{29}\right)=1$. Then $p=x^{2}+58 y^{2}$ for some $x, y \in \mathbb{Z}$ and

$$
\begin{aligned}
& (7+\sqrt{58})^{\frac{p-1}{2}} \\
& \equiv \begin{cases}(-1)^{\frac{y}{2}}(\bmod p) & \text { if } p \equiv 1(\bmod 8), \\
-\frac{y}{x} \cdot \frac{58-7 \sqrt{58}}{3}(\bmod p) & \text { if } p \equiv 3(\bmod 8) \text { and } 4 \mid x-y .\end{cases}
\end{aligned}
$$

Proof. By [SW, Table 9.1], a prime p is represented by $x^{2}+58 y^{2}$ if and only if $\left(\frac{-2}{p}\right)=\left(\frac{p}{29}\right)=1$. Now taking $a=3$ and $b=7$ in Corollary 4.9(iii) we deduce the result.

Comparing Theorem 2.1(i) with Corollary 4.9 we have the following result.

Theorem 4.5. Let $p \equiv 1(\bmod 4)$ be a prime and $a, b \in \mathbb{Z}$ with $(a, b)=1$ and $p \nmid a\left(a^{2}+b^{2}\right)$. Suppose $p=c^{2}+d^{2}=x^{2}+\left(a^{2}+b^{2}\right) y^{2}$ with $c, d, x, y \in \mathbb{Z}$ and $2 \mid d$.
(i) If $2 \mid a$ and $2 \nmid b$, then $\left(\frac{b c+a d}{a^{2}+b^{2}}\right)=(-1)^{\frac{a}{2} y}$.
(ii) If $2 \nmid a b$, then $(-1)^{\frac{(b c+a d)^{2}-1}{8}}\left(\frac{b c+a d}{\left(a^{2}+b^{2}\right) / 2}\right)=(-1)^{\frac{y}{2}}$.

Suppose that $p \equiv 1(\bmod 4)$ is a prime and $p=c^{2}+d^{2}$ with $c, d \in \mathbb{Z}$ and $2 \mid d$. If $p \equiv 1,9(\bmod 20)$, then $p=x^{2}+5 y^{2}$ for some $x, y \in \mathbb{Z}$. Taking $a=2$ and $b=1$ in Theorem 4.5 we deduce $\left(\frac{c+2 d}{5}\right)=(-1)^{y}$ and hence

$$
2 \left\lvert\, y \Longleftrightarrow\left(\frac{c+2 d}{5}\right)=1 \Longleftrightarrow \begin{cases}5 \mid d & \text { and } \quad p \equiv 1(\bmod 20) \tag{4.9}\\ 5 \mid c & \text { and } \\ 5 \equiv 9(\bmod 20)\end{cases}\right.
$$

This result is essentially due to Lehmer [Le1]. See also [BEW, Corollary 8.3.4]. If $p \equiv \pm 1, \pm 3, \pm 4(\bmod 13)$, then $p=x^{2}+13 y^{2}$ for some $x, y \in \mathbb{Z}$. Taking $a=2$ and $b=3$ in Theorem 4.5 we deduce $\left(\frac{3 c+2 d}{13}\right)=(-1)^{y}$. If $\left(\frac{p}{37}\right)=1$, then $p=x^{2}+37 y^{2}$ for some $x, y \in \mathbb{Z}$ (see [SW, Table 9.1]). Taking $a=6$ and $b=1$ in Theorem 4.5 we deduce $\left(\frac{c+6 d}{37}\right)=(-1)^{y}$. If $p \equiv 1,9(\bmod 40)$ and hence $p=x^{2}+40 y^{2}$ for some $x, y \in \mathbb{Z}$, putting $a=3$ and $b=1$ in Theorem 4.5 we deduce $(-1)^{\frac{(c+3 d)^{2}-1}{8}}\left(\frac{c+3 d}{5}\right)=(-1)^{y}$.
5. Congruences for $U_{\underline{p \pm 1}}\left(b,-k^{2}\right)(\bmod p)$ when $p=A x^{2}+2 B x y+C y^{2}$ and $A C-B^{2}=\left(b^{2}+4 k^{2}\right) /\left(4, b^{2}\right)$.

For $n \in \mathbb{N}$ and $b, k \in \mathbb{Z}$ with $b^{2}+4 k^{2} \neq 0$, by (1.3) and (1.4) we have

$$
\begin{equation*}
U_{n}\left(b,-k^{2}\right)=\frac{1}{\sqrt{b^{2}+4 k^{2}}}\left\{\left(\frac{b+\sqrt{b^{2}+4 k^{2}}}{2}\right)^{n}-\left(\frac{b-\sqrt{b^{2}+4 k^{2}}}{2}\right)^{n}\right\} \tag{5.1}
\end{equation*}
$$

and

$$
\begin{equation*}
V_{n}\left(b,-k^{2}\right)=\left(\frac{b+\sqrt{b^{2}+4 k^{2}}}{2}\right)^{n}+\left(\frac{b-\sqrt{b^{2}+4 k^{2}}}{2}\right)^{n} \tag{5.2}
\end{equation*}
$$

Theorem 5.1. Let p be an odd prime, $b, k \in \mathbb{Z}, 4 \nmid b^{2}+k^{2}$ and $p \nmid k\left(b^{2}+\right.$ $\left.4 k^{2}\right)$. Let $p=A x^{2}+2 B x y+C y^{2}$ with $A, B, C, x, y \in \mathbb{Z}, p \nmid A,\left(A, 2\left(b^{2}+\right.\right.$ $\left.\left.4 k^{2}\right)\right)=1$ and $(2 B)^{2}-4 A C=-\frac{4}{\left(4, b^{2}\right)}\left(b^{2}+4 k^{2}\right)$. Assume $y / 2^{\operatorname{ord}_{2} y} \equiv(A x+$ $B y) / 2^{\operatorname{ord}_{2}(A x+B y)} \equiv 1(\bmod 4)$. Let $\left\{U_{n}\right\}$ and $\left\{V_{n}\right\}$ be given by

$$
\begin{aligned}
& U_{0}=0, U_{1}=1, U_{n+1}=b U_{n}+k^{2} U_{n-1} \quad(n \geq 1) \\
& V_{0}=2, \quad V_{1}=b, \quad V_{n+1}=b V_{n}+k^{2} V_{n-1} \quad(n \geq 1)
\end{aligned}
$$

(i) If $p \equiv 1(\bmod 4)$, then

$$
p \left\lvert\, U_{\frac{p-1}{2}}\right., U_{\frac{p+1}{2}} \equiv \frac{1}{2} V_{\frac{p-1}{2}}(\bmod p), V_{\frac{p+1}{2}} \equiv \frac{b}{2} V_{\frac{p-1}{2}}(\bmod p)
$$

and

(ii) If $p \equiv 3(\bmod 4)$, then
$p \left\lvert\, V_{\frac{p+1}{2}}\right., U_{\frac{p-1}{2}} \equiv-\frac{b}{b^{2}+4 k^{2}} V_{\frac{p-1}{2}}(\bmod p), U_{\frac{p+1}{2}} \equiv \frac{2 k^{2}}{b^{2}+4 k^{2}} V_{\frac{p-1}{2}}(\bmod p)$
and

$$
V_{\frac{p-1}{2}} \equiv\left\{\begin{array}{c}
\left.(-1)^{k y+\frac{A-3}{4}\left(\frac{B}{A}\right)\left(\frac{b-2 k i}{A}\right)_{4} i \frac{\left(b^{2}+4 k^{2}\right) y}{k(A x+B y)}(\bmod p)} \begin{array}{c}
\text { if } 2 \nmid b, \\
(-1)^{\frac{y}{2}} i \frac{A-3}{4}\left(\frac{B}{A}\right)\left(\frac{2 k+b}{4}-\frac{2 k-b}{4} i\right.
\end{array}\right) \frac{\left(b^{2}+4 k^{2}\right) y}{2 k(A x+B y)}(\bmod p) \\
\text { if } 8 \mid b-2 k \text { and } 2 \mid y, \\
\left.-i^{\frac{1-A}{4}\left(\frac{B}{A}\right)\left(\frac{2 k+b}{4}-\frac{2 k-b}{4} i\right.}\right)_{4} \frac{\left(b^{2}+4 k^{2}\right) y}{2 k(A x+B y)}(\bmod p) \\
\text { if } 8 \mid b-2 k \text { and } 2 \nmid y, \\
(-1)^{\frac{A-3}{4}+\frac{b}{4} y}\left(\frac{B}{A}\right)\left(\frac{k+\frac{b}{2} i}{A}\right)_{4} i \frac{\left(b^{2}+4 k^{2}\right) y}{2 k(A x+B y)}(\bmod p) \\
\text { if } 4 \mid b
\end{array}\right.
$$

Proof. We first determine $\left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ by considering the following three cases.

Case 1. $2 \nmid b$. Taking $a=2 k$ in Theorem 4.4 we see that

$$
\begin{aligned}
& \left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left\{\begin{array}{lr}
(-1)^{k y+\frac{A-1}{4}}\left(\frac{B}{A}\right)\left(\frac{b-2 k i}{A}\right)_{4}(\bmod p) & \text { if } p \equiv 1(\bmod 4), \\
(-1)^{k y+\frac{A-3}{4}}\left(\frac{B}{A}\right)\left(\frac{b-2 k i}{A}\right)_{4} i \frac{y}{A x+B y} \cdot \frac{b^{2}+4 k^{2} \mp b \sqrt{b^{2}+4 k^{2}}}{2 k}(\bmod p)
\end{array}\right. \\
& \quad \text { if } p \equiv 3(\bmod 4),
\end{aligned} ~ .
$$

Case 2. $2 \| b$. In this case, $b / 2$ and k are odd. We choose the sign of k so that $k \equiv b / 2(\bmod 4)$. As $A p=(A x+B y)^{2}+\left(\left(\frac{b}{2}\right)^{2}+k^{2}\right) y^{2} \equiv(A x+B y)^{2}+$ $2 y^{2} \equiv 1+2 y^{2} \equiv 2-(-1)^{y}(\bmod 8)$ we have $p \equiv A^{2} p \equiv\left(2-(-1)^{y}\right) A(\bmod 8)$. Thus

$$
2^{\frac{p-1}{2}} \equiv(-1)^{\frac{p-\left(\frac{-1}{p}\right)}{4}}=(-1)^{\frac{\left(2-(-1)^{y}\right) A-\left(\frac{-1}{p}\right)}{4}}(\bmod p) .
$$

Now applying the above and replacing a, b by $k, b / 2$ in Theorem 4.4 we obtain

$$
\begin{aligned}
& (-1)^{\frac{\left(2-(-1)^{y}\right) A-\left(\frac{-1}{p}\right)}{4}}\left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left(\frac{\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{2}\right)^{\frac{p-1}{2}}
\end{aligned}
$$

Case 3. $4 \mid b$. In this case, k is odd and $b / 2$ is even. Substituting a, b by $k, b / 2$ in Theorem 4.4 we see that

$$
\begin{aligned}
& (-1)^{\frac{p-\left(\frac{-1}{p}\right)}{4}}\left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left(\frac{\frac{b}{2} \pm \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{2}\right)^{\frac{p-1}{2}} \\
& \equiv\left\{\begin{array}{cc}
(-1)^{\frac{p-A}{4}}+\frac{b}{4} y\left(\frac{B}{A}\right)\left(\frac{k+\frac{b}{2} i}{A}\right)_{4}(\bmod p) & \text { if } p \equiv 1(\bmod 4), \\
(-1)^{\frac{p-A}{4}}+1+\frac{b}{4} y\left(\frac{B}{A}\right)\left(\frac{k+\frac{b}{2} i}{A}\right)_{4} i \frac{y}{A x+B y} \cdot \frac{\left(\frac{b}{2}\right)^{2}+k^{2} \mp \frac{b}{2} \sqrt{\left(\frac{b}{2}\right)^{2}+k^{2}}}{k}(\bmod p) \\
\text { if } p \equiv 3(\bmod 4) .
\end{array}\right.
\end{aligned}
$$

By (3.1) we have

$$
U_{\frac{p+1}{2}}=\frac{1}{2}\left(b U_{\frac{p-1}{2}}+V_{\frac{p-1}{2}}\right) \quad \text { and } \quad V_{\frac{p+1}{2}}=\frac{1}{2}\left(\left(b^{2}+4 k^{2}\right) U_{\frac{p-1}{2}}+b V_{\frac{p-1}{2}}\right) .
$$

If $p \equiv 1(\bmod 4)$, by the above congruences for $\left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ and (5.1)-(5.2) we deduce $p \left\lvert\, U_{\frac{p-1}{2}}\right.$ and the congruence for $V_{\frac{p-1}{2}}(\bmod p)$. As $p \left\lvert\, U_{\frac{p-1}{2}}\right.$, we have $U_{\frac{p+1}{2}} \equiv \frac{1}{2} V_{\frac{p-1}{2}}(\bmod p)$ and $V_{\frac{p+1}{2}} \equiv \frac{b}{2} V_{\frac{p-1}{2}}(\bmod p)$. If $p \equiv 3(\bmod 4)$, as

$$
\frac{b^{2}+4 k^{2} \mp b \sqrt{b^{2}+4 k^{2}}}{2 k} \cdot \frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}= \pm k \sqrt{b^{2}+4 k^{2}},
$$

by the above congruences for $\left(\frac{b \pm \sqrt{b^{2}+4 k^{2}}}{2}\right)^{\frac{p-1}{2}}(\bmod p)$ and (5.2) we deduce $p \left\lvert\, V_{\frac{p+1}{2}}\right.$ and the congruence for $V_{\frac{p-1}{2}}(\bmod p)$. Since $p \left\lvert\, V_{\frac{p+1}{2}}\right.$ we have $U_{\frac{p-1}{2}} \equiv-\frac{b}{b^{2}+4 k^{2}} V_{\frac{p-1}{2}}(\bmod p)$ and

$$
U_{\frac{p+1}{2}} \equiv \frac{1}{2}\left(-\frac{b^{2}}{b^{2}+4 k^{2}} V_{\frac{p-1}{2}}+V_{\frac{p-1}{2}}\right)=\frac{2 k^{2}}{b^{2}+4 k^{2}} V_{\frac{p-1}{2}}(\bmod p) .
$$

This completes the proof.
Corollary 5.1. Let p be an odd prime and let $\left\{U_{n}\right\}$ be given by $U_{0}=0, U_{1}=$ 1 and $U_{n+1}=3 U_{n}+U_{n-1}(n \geq 1)$.
(i) If $p \equiv 1(\bmod 4), p \equiv \pm 1, \pm 3, \pm 4(\bmod 13)$ and hence $p=x^{2}+13 y^{2}$ for some $x, y \in \mathbb{Z}$, then $p \left\lvert\, U_{\frac{p-1}{2}}\right.$ and $U_{\frac{p+1}{2}} \equiv(-1)^{y}(\bmod p)$.
(ii) If $p \equiv 3(\bmod 4), p \equiv \pm 2, \pm 5, \pm 6(\bmod 13), p \neq 7$ and hence $p=$ $7 x^{2}+2 x y+2 y^{2}$ for some $x, y \in \mathbb{Z}$, then

$$
U_{\frac{p-1}{2}} \equiv(-1)^{y+1} \frac{3 y}{7 x+y}(\bmod p) \quad \text { and } \quad U_{\frac{p+1}{2}} \equiv(-1)^{y} \frac{2 y}{7 x+y}(\bmod p)
$$

where x and y are chosen so that $y / 2^{\operatorname{ord}_{2} y} \equiv(7 x+y) / 2^{\operatorname{ord}_{2}(7 x+y)} \equiv 1(\bmod 4)$.
Proof. If $p \equiv 1(\bmod 4)$ and $p \equiv \pm 1, \pm 3, \pm 4(\bmod 13)$, by [SW, Table 9.1] we have $p=x^{2}+13 y^{2}$ for some $x, y \in \mathbb{Z}$. Now putting $A=1, B=$ $0, C=13, b=3$ and $k=1$ in Theorem $5.1(\mathrm{i})$ we see that $p \left\lvert\, U_{\frac{p-1}{2}}\right.$ and $U_{\frac{p+1}{2}} \equiv(-1)^{y}(\bmod p)$. If $p \equiv 3(\bmod 4)$ and $p \equiv \pm 2, \pm 5, \pm 6(\bmod 13)$, by [SW, Table 9.1] we have $p=7 x^{2} \pm 2 x y+2 y^{2}$ for some $x, y \in \mathbb{Z}$. We choose the signs of x and y so that $y / 2^{\operatorname{ord}_{2} y} \equiv(7 x \pm y) / 2^{\operatorname{ord}_{2}(7 x \pm y)} \equiv 1(\bmod 4)$. Putting $A=7, B=1, C=2, b=3$ and $k=1$ in Theorem 5.1(ii) we see that

$$
U_{\frac{p-1}{2}} \equiv-\frac{3}{13}(-1)^{y+1}\left(\frac{ \pm 1}{7}\right)\left(\frac{3-2 i}{7}\right)_{4} i \frac{13 y}{7 x \pm y}=(-1)^{y+1} \frac{3 y}{y \pm 7 x}(\bmod p)
$$

and

$$
U_{\frac{p+1}{2}} \equiv \frac{2}{13}(-1)^{y+1}\left(\frac{ \pm 1}{7}\right)\left(\frac{3-2 i}{7}\right)_{4} i \frac{13 y}{7 x \pm y}=(-1)^{y} \frac{2 y}{y \pm 7 x}(\bmod p)
$$

This completes the proof.
Corollary 5.2. Let $p \equiv 1(\bmod 4)$ be a prime, $b, k \in \mathbb{Z}, 2 \| b, 2 \nmid k$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Suppose $p=\frac{b^{2}+4 k^{2}}{8} x^{2}+2 y^{2}$ for some $x, y \in \mathbb{Z}$. Then
$p \left\lvert\, U_{\frac{p-1}{2}}\left(b,-k^{2}\right)\right., \quad U_{\frac{p+1}{2}}\left(b,-k^{2}\right) \equiv \frac{1}{2} V_{35} V_{\frac{p-1}{2}}\left(b,-k^{2}\right) \equiv(-1)^{\frac{\left(\frac{b}{2}\right)^{2}-1}{8}+\frac{y}{2}}(\bmod p)$
and

$$
V_{\frac{p+1}{2}}\left(b,-k^{2}\right) \equiv(-1)^{\frac{\left(\frac{b}{2}\right)^{2}-1}{8}+\frac{y}{2}} b(\bmod p) .
$$

Proof. We choose the signs of k and x so that $k \equiv b / 2(\bmod 4)$ and $x \equiv 1(\bmod 4)$. Set $c=\left(b^{2}+4 k^{2}\right) / 8$. Then $c \equiv 1(\bmod 4)$ and hence $p=c x^{2}+2 y^{2} \equiv 2 y+1(\bmod 4)$. As $p \equiv 1(\bmod 4)$ we have $2 \mid y$. Clearly $p=c x^{2}+2 y^{2}=(c+2) x^{2}-4 x(x-y)+2(x-y)^{2},(c+2) x \pm 2(x-y) \equiv c x \equiv$ $1(\bmod 4)$ and $(-1)^{\frac{y}{2}}(x-y) \equiv 1(\bmod 4)$. We also have $\left(c+2,2\left(b^{2}+4 k^{2}\right)\right)=1$ and $2 \nmid x-y$. If $p \mid c+2$, then $2\left(x^{2}-y^{2}\right)=(c+2) x^{2}-p \equiv 0(\bmod p)$. As $0 \leq x^{2}, y^{2}<p$ we deduce $x^{2}=y^{2}$. But $2 \nmid x$ and $2 \mid y$. Thus $x^{2} \neq y^{2}$ and so $p \nmid c+2$. Now putting $A=c+2, B=2(-1)^{\frac{y}{2}+1}, C=2$ and substituting y by $(-1)^{\frac{y}{2}}(x-y)$ in Theorem 5.1(i) and then applying [Su6, (2.7) and (2.8)] we obtain

$$
\begin{aligned}
\frac{1}{2} V_{\frac{p-1}{2}}\left(b,-k^{2}\right) & \equiv i^{\frac{(c+2)-3}{4}}\left(\frac{2(-1)^{\frac{y}{2}+1}}{c+2}\right)\left(\frac{\frac{2 k+b}{4}-\frac{2 k-b}{4} i}{c+2}\right)_{4} \\
& =i^{\frac{c-1}{4}}(-1)^{\frac{c+3}{4}} \cdot(-1)^{\frac{y}{2}+1} \cdot(-1)^{\frac{c+1}{2} \cdot \frac{2 k-b}{8}}\left(\frac{c+2}{\frac{2 k+b}{4}-\frac{2 k-b}{4} i}\right)_{4} \\
& =(-1)^{\frac{2 k-b}{8}+\frac{y}{2}+\frac{c-1}{4}} i^{\frac{c-1}{4}}\left(\frac{2}{\frac{2 k+b}{4}-\frac{2 k-b}{4} i}\right)_{4} \\
& =(-1)^{\frac{2 k-b}{8}+\frac{y}{2}+\frac{c-1}{4}} i^{\frac{c-1}{4}} \cdot i^{(-1)^{\frac{b-2}{4} \frac{2 k-b}{8}}(\bmod p)}
\end{aligned}
$$

Set $t=(2 k-b) / 8$. Then $\frac{b-2}{4}=\frac{k-1}{2}-2 t$ and

$$
c=\frac{b^{2}+4 k^{2}}{8}=\frac{(2 k-b)^{2}+4(2 k-8 t) k}{8}=8 t^{2}+k^{2}-4 k t
$$

Thus

$$
\begin{aligned}
& (-1)^{\frac{2 k-b}{8}} i^{\frac{c-1}{4}} \cdot i^{(-1)^{\frac{b-2}{4} \frac{2 k-b}{8}}} \\
& =(-1)^{t} i^{\frac{8 t^{2}-4 k t+k^{2}-1}{4}} \cdot i^{(-1)^{\frac{b-2}{4}} t}=(-1)^{t} \cdot(-1)^{t^{2}+\frac{k^{2}-1}{8}} i^{-k t} \cdot i^{(-1)^{\frac{k-1}{2}} t} \\
& =(-1)^{\frac{k^{2}-1}{8}} i^{\left((-1)^{\frac{k-1}{2}}-k\right) t}=(-1)^{\frac{k^{2}-1}{8}} .
\end{aligned}
$$

Hence

$$
\begin{aligned}
\frac{1}{2} V_{\frac{p-1}{2}}\left(b,-k^{2}\right) & \equiv(-1)^{\frac{y}{2}+\frac{c-1}{4}} \cdot(-1)^{\frac{k^{2}-1}{8}}=(-1)^{\frac{y}{2}+\frac{\left(\frac{b}{2}\right)^{2}+k^{2}-2}{8}+\frac{k^{2}-1}{8}} \\
& =(-1)^{\frac{\left(\frac{b}{2}\right)^{2}-1}{8}+\frac{y}{2}}(\bmod p) .
\end{aligned}
$$

By Theorem 5.1(i), $p \left\lvert\, U_{\frac{p-1}{2}}\left(b,-k^{2}\right)\right., U_{\frac{p+1}{2}}\left(b,-k^{2}\right) \equiv \frac{1}{2} V_{\frac{p-1}{2}}\left(b,-k^{2}\right)(\bmod p)$ and $V_{\frac{p+1}{2}}\left(b,-k^{2}\right) \equiv \frac{b}{2} V_{\frac{p-1}{2}}{ }^{2}\left(b,-k^{2}\right)(\bmod p)$. So the corollary is proved.

From (3.2) and Theorem 5.1 we deduce the following result.

Theorem 5.2. Let $p \equiv 1(\bmod 4)$ be a prime, $b, k \in \mathbb{Z}, 4 \nmid b^{2}+k^{2}$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Suppose $p=A x^{2}+2 B x y+C y^{2}$ with $A, B, C, x, y \in \mathbb{Z}$, $p \nmid A,\left(A, 2\left(b^{2}+4 k^{2}\right)\right)=1$ and $(2 B)^{2}-4 A C=-\frac{4}{\left(4, b^{2}\right)}\left(b^{2}+4 k^{2}\right)$. Assume $y / 2^{\operatorname{ord}_{2} y} \equiv(A x+B y) / 2^{\operatorname{ord}_{2}(A x+B y)} \equiv 1(\bmod 4)$. Then $p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right)\right.$ if and only if

Proof. If $2 \| b$, then $\left(\frac{b}{2}\right)^{2}+k^{2} \equiv 2(\bmod 8)$ and thus $A p=(A x+B y)^{2}+$ $\left(\left(\frac{b}{2}\right)^{2}+k^{2}\right) y^{2} \equiv 1+2 y^{2} \equiv 2-(-1)^{y}(\bmod 8)$. Thus $A \equiv A p \equiv 2-(-1)^{y} \equiv$ $(-1)^{y}(\bmod 4)$ and

$$
(-1)^{\frac{p-1}{4}}=(-1)^{\frac{A p-A}{4}}=(-1)^{\frac{2-(-1)^{y}-A}{4}}= \begin{cases}(-1)^{\frac{A-1}{4}} & \text { if } 4 \mid A-1 \\ (-1)^{\frac{A-3}{4}} & \text { if } 4 \mid A-3\end{cases}
$$

If $4 \nmid b-2$, then $\left(b^{2}+4 k^{2}\right) /\left(4, b^{2}\right)$ is odd. Hence

$$
\begin{aligned}
(-1)^{\frac{p-1}{4}} & =(-1)^{\frac{A p-A}{4}}=(-1)^{\left((A x+B y)^{2}+\frac{b^{2}+4 k^{2}}{\left(4, b^{2}\right)} y^{2}-A\right) / 4} \\
& = \begin{cases}(-1)^{\frac{y^{2}\left(b^{2}+4 k^{2}\right) /\left(4, b^{2}\right)-A+1}{4}}=(-1)^{\frac{y}{2}+\frac{A-1}{4}} & \text { if } 2 \mid y, \\
(-1)^{\frac{A x+B y}{2}+\frac{1-A}{4}+k} & \text { if } 2 \nmid b y, \\
(-1)^{\frac{A x+B y}{2}+\frac{1-A}{4}+\frac{b}{4}} & \text { if } 4 \mid b \text { and } 2 \nmid y .\end{cases}
\end{aligned}
$$

From (3.2) we know that $p \left\lvert\, U_{\frac{p-1}{4}}\right.$ if and only if $V_{\frac{p-1}{2}} \equiv 2(-1)^{\frac{p-1}{4}}\left(\frac{k}{p}\right)(\bmod p)$. Thus applying the above and Theorem 5.1(i) we deduce the result.

Putting $A=1, B=0$ and $C=\left(b^{2}+4 k^{2}\right) /\left(4, b^{2}\right)$ in Theorem 5.2 we have:
Corollary 5.3. Let $p \equiv 1(\bmod 4)$ be a prime, $b, k \in \mathbb{Z}, 4 \nmid b^{2}+k^{2}$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Suppose $p=x^{2}+\frac{b^{2}+4 k^{2}}{\left(4, b^{2}\right)} y^{2}$ for some $x, y \in \mathbb{Z}$. Then

$$
p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right) \Longleftrightarrow\left(\frac{k}{p}\right)=(-1)^{\frac{x y}{2}}\right.
$$

Remark 5.1 When $k=1$ and $2 \nmid b$, Corollary 5.3 has been given in [Su5, Theorem 5.3]. See also [Su6, Corollary 7.1].

Theorem 5.3. Let $p \equiv 1(\bmod 4)$ be a prime, $b, k \in \mathbb{Z}, 2 \| b, 2 \nmid k$ and $p \nmid k\left(b^{2}+4 k^{2}\right)$. Suppose $p=\frac{b^{2}+4 k^{2}}{8} x^{2}+2 y^{2}$ for some $x, y \in \mathbb{Z}$. Then $p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right)\right.$ if and only if $(-1)^{\frac{k^{2}-1}{8}}\left(\frac{k}{p}\right)=(-1)^{\frac{y}{2}}$.

Proof. As $p \equiv 1(\bmod 4)$ we have $2 \nmid x$ and $2 \mid y$. Thus $p=\frac{b^{2}+4 k^{2}}{8} x^{2}+$ $2 y^{2} \equiv \frac{1}{2}\left(\left(\frac{b}{2}\right)^{2}+k^{2}\right)(\bmod 8)$ and hence $\left(\frac{2}{p}\right)=(-1)^{\frac{p-1}{4}}=(-1)^{\frac{\left(\frac{b}{2}\right)^{2}+k^{2}-2}{8}}$. Therefore, by (3.2) and Corollary 5.2 we have

$$
\begin{aligned}
p \left\lvert\, U_{\frac{p-1}{4}}\left(b,-k^{2}\right)\right. & \Longleftrightarrow V_{\frac{p-1}{2}}\left(b,-k^{2}\right) \equiv 2\left(\frac{2 k}{p}\right)(\bmod p) \\
& \Longleftrightarrow(-1)^{\frac{\left(\frac{b}{2}\right)^{2}-1}{8}+\frac{y}{2}}=\left(\frac{2 k}{p}\right) \\
& \Longleftrightarrow(-1)^{\frac{\left(\frac{b}{2}\right)^{2}-1}{8}+\frac{y}{2}}=(-1)^{\frac{\left(\frac{b}{2}\right)^{2}+k^{2}-2}{8}}\left(\frac{k}{p}\right) \\
& \Longleftrightarrow(-1)^{\frac{y}{2}}=(-1)^{\frac{k^{2}-1}{8}}\left(\frac{k}{p}\right) .
\end{aligned}
$$

This proves the theorem.
Corollary 5.4. Let $b \in\{2,14\}$. Let $p \neq 2 b+1$ be a prime of the form $4 n+1$. Then $p \left\lvert\, U_{\frac{p-1}{4}}(b,-9)\right.$ if and only if $p=x^{2}+8(2 b+1) y^{2}$ with $x, y \in \mathbb{Z}$ and $(-1)^{y}=\left(\frac{p}{3}\right)^{4}$, or $p=(2 b+1) x^{2}+8 y^{2}$ with $x, y \in \mathbb{Z}$ and $(-1)^{y}=-\left(\frac{p}{3}\right)$.

Proof. From Remark 3.2 we know that $p \nmid U_{\frac{p-1}{4}}(b,-9)$ when $\left(\frac{4 b+2}{p}\right)=-1$. If $p=x^{2}+8(2 b+1) y^{2}$ or $(2 b+1) x^{2}+8 y^{2}$, then clearly $\left(\frac{4 b+2}{p}\right)=\left(\frac{-2(2 b+1)}{p}\right)=1$. So the result holds when $\left(\frac{4 b+2}{p}\right)=-1$. Now assume $\left(\frac{4 b+2}{p}\right)=\left(\frac{-4 b-2}{p}\right)=1$. From [SW, Table 9.1] we know that $p=x^{2}+(4 b+2) y^{2}$ or $(2 b+1) x^{2}+2 y^{2}$ according as $\left(\frac{-2}{p}\right)=\left(\frac{p}{2 b+1}\right)=1$ or $\left(\frac{-2}{p}\right)=\left(\frac{p}{2 b+1}\right)=-1$. If $p \equiv 1(\bmod 8)$ and $\left(\frac{p}{2 b+1}\right)=1$, then $p=x^{2}+(4 b+2) y^{2}$ with $2 \mid y$. Taking $k=3$ in Corollary 5.3 we see that

$$
p \left\lvert\, U_{\frac{p-1}{4}}(b,-9) \Longleftrightarrow\left(\frac{3}{p}\right)=(-1)^{\frac{x y}{2}} \Longleftrightarrow\left(\frac{p}{3}\right)=(-1)^{\frac{y}{2}} .\right.
$$

If $p \equiv 5(\bmod 8)$ and $\left(\frac{p}{2 b+1}\right)=-1$, then $p=(2 b+1) x^{2}+2 y^{2}$ with $2 \mid y$. Taking $k=3$ in Theorem 5.3 we obtain

$$
p \left\lvert\, U_{\frac{p-1}{4}}(b,-9) \Longleftrightarrow(-1)^{\frac{3^{2}-1}{8}}\left(\frac{3}{p}\right)=(-1)^{\frac{y}{2}} \Longleftrightarrow(-1)^{\frac{y}{2}}=-\left(\frac{p}{3}\right) .\right.
$$

The proof is now complete.

Theorem 5.4. Let p be an odd prime.
(i) If $p \equiv 1,9,11,19(\bmod 40)$ and hence $p=x^{2}+10 y^{2}$ for some integers x and y, then

$$
U_{\frac{p-1}{2}}(6,-1) \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv 1,9(\bmod 40), \\ -\frac{3 y}{x}(\bmod p) & \text { if } p \equiv 11,19(\bmod 40) \text { and } 4 \mid x-y\end{cases}
$$

and

$$
U_{\frac{p+1}{2}}(6,-1) \equiv \begin{cases}(-1)^{\frac{y}{2}}(\bmod p) & \text { if } p \equiv 1,9(\bmod 40), \\ \frac{y}{x}(\bmod p) & \text { if } p \equiv 11,19(\bmod 40) \text { and } 4 \mid x-y\end{cases}
$$

(ii) If $p \equiv 13,37(\bmod 40)$ and hence $p=5 x^{2}+2 y^{2}$ for some integers x and y, then $p \left\lvert\, U_{\frac{p-1}{2}}(6,-1)\right.$ and $U_{\frac{p+1}{2}}(6,-1) \equiv(-1)^{\frac{y}{2}+1}(\bmod p)$.

Proof. From (1.3) and Corollary 4.10 we deduce (i). Putting $b=6$ and $k=1$ in Corollary 5.2 we deduce (ii). So the theorem is proved.

Theorem 5.5. Let p be an odd prime.
(i) If $\left(\frac{-2}{p}\right)=\left(\frac{p}{29}\right)=1$ and hence $p=x^{2}+58 y^{2}$ for some integers x and y, then

$$
U_{\frac{p-1}{2}}(14,-9) \equiv \begin{cases}0(\bmod p) & \text { if } p \equiv 1(\bmod 8), \\ \frac{7 y}{3 x}(\bmod p) & \text { if } p \equiv 3(\bmod 8) \text { and } 4 \mid x-y\end{cases}
$$

and

$$
U_{\frac{p+1}{2}}(14,-9) \equiv \begin{cases}(-1)^{\frac{y}{2}}(\bmod p) & \text { if } p \equiv 1(\bmod 8), \\ -\frac{3 y}{x}(\bmod p) & \text { if } p \equiv 3(\bmod 8) \text { and } 4 \mid x-y\end{cases}
$$

(ii) If $p \equiv 5(\bmod 8),\left(\frac{p}{29}\right)=-1$ and hence $p=29 x^{2}+2 y^{2}$ for some integers x and y, then $p \left\lvert\, U_{\frac{p-1}{2}}(14,-9)\right.$ and $U_{\frac{p+1}{2}}(14,-9) \equiv(-1)^{\frac{y}{2}}(\bmod p)$.

Proof. From (1.3) and Corollary 4.11 we deduce (i). Putting $b=14$ and $k=3$ in Corollary 5.2 we deduce (ii). So the theorem is proved.

References

[AR] A. Aigner and H. Reichardt, Stufenreihen im Potenzrestcharakter, J. Reine Angew. Math. 184 (1942), 158-160.
[BC] P. Barrucand and H. Cohn, Note on primes of type $x^{2}+32 y^{2}$, class number, and residuacity, J. Reine Angew. Math. 238 (1969), 67-70.
[BEW] B.C. Berndt, R.J. Evans and K.S. Williams, Gauss and Jacobi Sums, Wiley, New York, 1998, p. 256.
[B] J. Brandler, Residuacity properties of real quadratic units, J. Number Theory 5 (1973), 271-287.
[Bro1] E. Brown, A theorem on biquadratic reciprocity, Proc. Amer. Math. Soc. 30 (1971), 220-222.
[Bro2] E. Brown, Quadratic forms and biquadratic reciprocity, J. Reine Angew. Math. 253 (1972), 214-220.
[BLW] D.A. Buell, P.A. Leonard and K.S. Williams, Note on the quadratic character of a quadratic unit, Pacific J. Math. 92 (1981), 35-38.
[Bu] K. Burde, Ein rationales biquadratisches Reziprozitätsgesetz, J. Reine Angew. Math. 235 (1969), 175-184.
[D] H. Dörrie, Das quadratische Reciprocitätsgesetz in quadratischen Zahlkörpern mit der Classenzahl 1, Diss. Göttingen, 1898.
[E1] R.J. Evans, Rational reciprocity laws, Acta Arith. 39 (1981), 281-294.
[E2] R.J. Evans, Residuacity of primes, Rocky Mountain J. Math. 19 (1989), 10691081.
[FK] Y. Furuta and P. Kaplan, On quadratic and quartic characters of quadratic units, Sci. Rep. Kanazawa Univ. 26 (1981), 27-30.
[K] K. Kramer, Residue properties of certain quadratic units, J. Number Theory 21 (1985), 204-213.
[HW] R.H. Hudson and K.S. Williams, Some new residuacity criteria, Pacific J. Math. 91 (1980), 135-143.
[IR] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, second ed., Springer, New York, 1990.
[KWY] P. Kaplan, K.S. Williams and Y. Yamamoto, An application of dihedral fields to representations of primes by binary quadratic forms, Acta Arith. 44 (1984), 407-413.
[L] D.H. Lehmer, An extended theory of Lucas' functions, Ann. Math. 31 (1930), 419-448.
[Le1] E. Lehmer, On the quadratic character of the Fibonacci root, Fibonacci Quart. 4 (1966), 135-138.
[Le2] E. Lehmer, On the quadratic character of some quadratic surds, J. Reine Angew. Math. 250 (1971), 42-48.
[Le3] E. Lehmer, On some special quartic reciprocity laws, Acta Arith. 21 (1972), 367377.
[Le4] E. Lehmer, On the quartic character of quadratic units, J. Reine Angew. Math. 268/269 (1974), 294-301.
[Le5] E. Lehmer, Rational reciprocity laws, Amer. Math. Monthly 85 (1978), 467-472.
[Lem1] F. Lemmermeyer, Rational quartic reciprocity, Acta Arith. 67 (1994), 387-390.
[Lem2] F. Lemmermeyer, Reciprocity Laws: From Euler to Eisenstein, Springer, Berlin, 2000.
[LW1] P.A. Leonard and K.S. Williams, The quadratic and quartic character of certain quadratic units I, Pacific J. Math. 71 (1977), 101-106.
[LW2] P.A. Leonard and K.S. Williams, The quadratic and quartic character of certain quadratic units II, Rocky Mountain J. Math. 9 (1979), 683-691.
[LW3] P.A. Leonard and K.S. Williams, A representation problem involving binary quadratic forms, Archiv der Math. 36 (1981), 53-56.
[S] A. Scholz, Über die Lösbarkeit der Gleichung $t^{2}-D u^{2}=-4$, Math. Z. 39 (1934), 95-111.
[Sc] T.H. Schönemann, Theorie der symmetrischen Functionen der Wurzeln einer Gleichung. Allgemeine Sätze über Congruenzen nebst einigen Anwendungen derselben, J. Reine Angew. Math. 19 (1839), 289-308.
[Su1] Z.H. Sun, Notes on quartic residue symbol and rational reciprocity laws, J. Nanjing Univ. Math. Biquarterly 9 (1992), 92-101.
[Su2] Z.H. Sun, Combinatorial sum $\sum_{\substack{k=0 \\ k \equiv r(\bmod m)}}^{n}{ }_{k}^{n}$ and its applications in number theory II, J. Nanjing Univ. Math. Biquarterly 10 (1993), 105-118.
[Su3] Z.H. Sun, On the theory of cubic residues and nonresidues, Acta Arith. 84 (1998), 291-335.
[Su4] Z.H. Sun, Supplements to the theory of quartic residues, Acta Arith. 97 (2001), 361-377.
[Su5] Z.H. Sun, Values of Lucas sequences modulo primes, Rocky Mountain J. Math. 33 (2003), 1123-1145.
[Su6] Z.H. Sun, Quartic residues and binary quadratic forms, J. Number Theory 113 (2005), 10-52.
[SS] Z.H. Sun and Z.W. Sun, Fibonacci numbers and Fermat's last theorem, Acta Arith. 60 (1992), 371-388.
[SW] Z.H. Sun and K.S. Williams, On the number of representations of n by $a x^{2}+b x y+$ $c y^{2}$, Acta Arith. 122 (2006), 101-171.
[V] H.S. Vandiver, Problem 152, Amer. Math. Monthly 15 (1908), 46, 235.
[W] H.C. Williams, The quadratic character of a certain quadratic surd, Utilitas Math. 5 (1974), 49-55.
[Wi1] K.S. Williams, Note on a result of Barrucand and Cohn, J. Reine Angew. Math. 285 (1976), 218-220.
[Wi2] K.S. Williams, A rational octic reciprocity law, Pacific J. Math. 63 (1976), 563570.
[Wi3] K.S. Williams, On Scholz's reciprocity law, Proc. Amer. Math. Soc. 64 (1977), 45-46.
[Wi4] K.S. Williams, On the evaluation of $\left(\varepsilon_{q_{1} q_{2}} / p\right)$, Rocky Mountain J. Math. 10 (1980), 559-573.
[Wi5] K.S. Williams, On Yamamoto's reciprocity law, Proc. Amer. Math. Soc. 111 (1991), 607-609.
[WHF] K.S. Williams, K. Hardy and C. Friesen, On the evaluation of the Legendre symbol $\frac{A+B \sqrt{m}}{p}$, Acta Arith. 45 (1985), 255-272.

[^0]: The author was supported by Natural Sciences Foundation of Jiangsu Educational Office in China (07KJB110009).

